Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 139
Filtrer
1.
Vaccine ; 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38897890

RÉSUMÉ

Subunit vaccines require an immunostimulant (adjuvant) and/or delivery system to induce immunity. However, currently, available adjuvants are either too dangerous in terms of side effects for human use (experimental adjuvants) or have limited efficacy and applicability. In this study, we examined the capacity of mannose-lipopeptide ligands to enhance the immunogenicity of a vaccine consisting of polyleucine(L15)-antigen conjugates anchored to liposomes. The clinically tested Group A Streptococcus (GAS) B-cell epitope, J8, combined with universal T helper PADRE (P) was used as the antigen. Six distinct mannose ligands were incorporated into neutral liposomes carrying L15PJ8. While induced antibody titers were relatively low, the ligand carrying mannose, glycine/lysine spacer, and two palmitic acids as liposomal membrane anchoring moieties (ligand 3), induced significantly higher IgG titers than non-mannosylated liposomes. The IgG titers were significantly enhanced when positively charged liposomes were employed. Importantly, the produced antibodies were able to kill GAS bacteria. Unexpectedly, the physical mixture of only ligand 3 and PJ8 produced self-assembled nanorods that induced antibody titers as high as those elicited by the lead liposomal formulation and antigen adjuvanted with the potent, but toxic, complete Freund's adjuvant (CFA). Antibodies produced upon immunization with PJ8 + 3 were even more opsonic than those induced by CFA + PJ8. Importantly, in contrast to CFA, ligand 3 did not induce observable adverse reactions or excessive inflammatory responses. Thus, we demonstrated that a mannose ligand, alone, can serve as an effective vaccine nanoadjuvant.

2.
Viruses ; 16(5)2024 05 10.
Article de Anglais | MEDLINE | ID: mdl-38793638

RÉSUMÉ

Coronavirus disease 2019 (COVID-19), the global pandemic caused by severe acute respiratory syndrome 2 virus (SARS-CoV-2) infection, has caused millions of infections and fatalities worldwide. Extensive SARS-CoV-2 research has been conducted to develop therapeutic drugs and prophylactic vaccines, and even though some drugs have been approved to treat SARS-CoV-2 infection, treatment efficacy remains limited. Therefore, preventive vaccination has been implemented on a global scale and represents the primary approach to combat the COVID-19 pandemic. Approved vaccines vary in composition, although vaccine design has been based on either the key viral structural (spike) protein or viral components carrying this protein. Therefore, mutations of the virus, particularly mutations in the S protein, severely compromise the effectiveness of current vaccines and the ability to control COVID-19 infection. This review begins by describing the SARS-CoV-2 viral composition, the mechanism of infection, the role of angiotensin-converting enzyme 2, the host defence responses against infection and the most common vaccine designs. Next, this review summarizes the common mutations of SARS-CoV-2 and how these mutations change viral properties, confer immune escape and influence vaccine efficacy. Finally, this review discusses global strategies that have been employed to mitigate the decreases in vaccine efficacy encountered against new variants.


Sujet(s)
Vaccins contre la COVID-19 , COVID-19 , Mutation , SARS-CoV-2 , Développement de vaccin , Humains , SARS-CoV-2/immunologie , SARS-CoV-2/génétique , Vaccins contre la COVID-19/immunologie , COVID-19/prévention et contrôle , COVID-19/immunologie , COVID-19/virologie , Glycoprotéine de spicule des coronavirus/immunologie , Glycoprotéine de spicule des coronavirus/génétique , Angiotensin-converting enzyme 2/métabolisme , Angiotensin-converting enzyme 2/génétique , Angiotensin-converting enzyme 2/immunologie
3.
Front Immunol ; 15: 1298721, 2024.
Article de Anglais | MEDLINE | ID: mdl-38469294

RÉSUMÉ

Subunit vaccines hold substantial promise in controlling infectious diseases, due to their superior safety profile, specific immunogenicity, simplified manufacturing processes, and well-defined chemical compositions. One of the most important end-targets of vaccines is a subset of lymphocytes originating from the thymus, known as T cells, which possess the ability to mount an antigen-specific immune response. Furthermore, vaccines confer long-term immunity through the generation of memory T cell pools. Dendritic cells are essential for the activation of T cells and the induction of adaptive immunity, making them key for the in vitro evaluation of vaccine efficacy. Upon internalization by dendritic cells, vaccine-bearing antigens are processed, and suitable fragments are presented to T cells by major histocompatibility complex (MHC) molecules. In addition, DCs can secrete various cytokines to crosstalk with T cells to coordinate subsequent immune responses. Here, we generated an in vitro model using the immortalized murine dendritic cell line, DC2.4, to recapitulate the process of antigen uptake and DC maturation, measured as the elevation of CD40, MHC-II, CD80 and CD86 on the cell surface. The levels of key DC cytokines, tumor necrosis alpha (TNF-α) and interleukin-10 (IL-10) were measured to better define DC activation. This information served as a cost-effective and rapid proxy for assessing the antigen presentation efficacy of various vaccine formulations, demonstrating a strong correlation with previously published in vivo study outcomes. Hence, our assay enables the selection of the lead vaccine candidates based on DC activation capacity prior to in vivo animal studies.


Sujet(s)
Présentation d'antigène , Cellules dendritiques , Animaux , Souris , Antigènes CD40/métabolisme , Cytokines/métabolisme , Vaccins sous-unitaires/métabolisme
4.
Vaccines (Basel) ; 12(2)2024 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-38400181

RÉSUMÉ

Mucosal vaccines are highly attractive due to high patient compliance and their suitability for mass immunizations. However, all currently licensed mucosal vaccines are composed of attenuated/inactive whole microbes, which are associated with a variety of safety concerns. In contrast, modern subunit vaccines use minimal pathogenic components (antigens) that are safe but typically poorly immunogenic when delivered via mucosal administration. In this study, we demonstrated the utility of various functional polymer-based nanostructures as vaccine carriers. A Group A Streptococcus (GAS)-derived peptide antigen (PJ8) was selected in light of the recent global spread of invasive GAS infection. The vaccine candidates were prepared by either conjugation or physical mixing of PJ8 with rod-, sphere-, worm-, and tadpole-shaped polymeric nanoparticles. The roles of nanoparticle shape and antigen conjugation in vaccine immunogenicity were demonstrated through the comparison of three distinct immunization pathways (subcutaneous, intranasal, and oral). No additional adjuvant or carrier was required to induce bactericidal immune responses even upon oral vaccine administration.

5.
J Colloid Interface Sci ; 663: 43-52, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38387185

RÉSUMÉ

Peptide-based vaccines can trigger highly specific immune responses, although peptides alone are usually unable to confer strong humoral or cellular immunity. Consequently, peptide antigens are administered with immunostimulatory adjuvants, but only a few are safe and effective for human use. To overcome this obstacle, herein a peptide antigen was lipidated to effectively anchor it to liposomes and emulsion. A peptide antigen B cell epitope from Group A Streptococcus M protein was conjugated to a universal T helper epitope, the pan DR-biding epitope (PADRE), alongside a lipidic moiety cholesterol. Compared to a free peptide antigen, the lipidated version (LP1) adopted a helical conformation and self-assembled into small nanoparticles. Surprisingly, LP1 alone induced the same or higher antibody titers than liposomes or emulsion-based formulations. In addition, antibodies produced by mice immunized with LP1 were more opsonic than those induced by administering the antigen with incomplete Freund's adjuvant. No side effects were observed in the immunized mice and no excessive inflammatory immune responses were detected. Overall, this study demonstrated how simple conjugation of cholesterol to a peptide antigen can produce a safe and efficacious vaccine against Group A Streptococcus - the leading cause of superficial infections and the bacteria responsible for deadly post-infection autoimmune disorders.


Sujet(s)
Adjuvants immunologiques , Vaccins , Souris , Humains , Animaux , Adjuvants immunologiques/pharmacologie , Adjuvants immunologiques/composition chimique , Lipopeptides/pharmacologie , Lipopeptides/composition chimique , Liposomes , Émulsions , Épitopes , Streptococcus
6.
ACS Infect Dis ; 9(8): 1570-1581, 2023 08 11.
Article de Anglais | MEDLINE | ID: mdl-37489053

RÉSUMÉ

Untreated group A Streptococcus (GAS) can lead to a range of life-threatening diseases, including rheumatic heart disease. To date, no therapeutic or prophylactic vaccines are commercially available to treat or prevent GAS infection. Development of a peptide-based subunit vaccine offers a promising solution, negating the safety issues of live-attenuated or inactive vaccines. Subunit vaccines administer small peptide fragments (antigens), which are typically poorly immunogenic. Therefore, these peptide antigens require formulation with an immune stimulant and/or vaccine delivery platform to improve their immunogenicity. We investigated polyelectrolyte complexes (PECs) and polymer-coated liposomes as self-adjuvanting delivery vehicles for a GAS B cell peptide epitope conjugated to a universal T-helper epitope and a synthetic toll-like receptor 2-targeting moiety lipid core peptide-1 (LCP-1). A structure-activity relationship of cationic PEC vaccines containing different external PEI-coatings (poly(ethylenimine); 10 kDa PEI, 25 kDa PEI, and a synthetic mannose-functionalized 25 kDa PEI) formed vaccines PEC-1, PEC-2, and PEC-3, respectively. All three PEC vaccines induced J8-specific systemic immunoglobulin G (IgG) antibodies when administered intranasally to female BALB/c mice without the use of additional adjuvants. Interestingly, PEC-3 induced the highest antibody titers among all tested vaccines, with the ability to effectively opsonize two clinically isolated GAS strains. A comparative study of PEC-2 and PEC-3 with liposome-based delivery systems was performed subcutaneously. LCP-1 was incorporated into a liposome formulation (DPPC, DPPG and cholesterol), and the liposomes were externally coated with PEI (25 kDa; Lip-2) or mannosylated PEI (25 kDa; Lip-3). All liposome vaccines induced stronger humoral immune responses compared to their PEC counterparts. Notably, sera of mice immunized with Lip-2 and Lip-3 produced significantly higher opsonic activity against clinically isolated GAS strains compared to the positive control, P25-J8 emulsified with the commercial adjuvant, complete Freund's adjuvant (CFA). This study highlights the capability of a PEI-liposome system to act as a self-adjuvanting vehicle for the delivery of GAS peptide antigens and protection against GAS infection.


Sujet(s)
Infections à streptocoques , Vaccins antistreptococciques , Femelle , Animaux , Souris , Liposomes/pharmacologie , Polyéthylèneimine , Streptococcus pyogenes , Peptides/pharmacologie , Adjuvants immunologiques/composition chimique , Infections à streptocoques/prévention et contrôle , Épitopes/pharmacologie
7.
Molecules ; 28(5)2023 Feb 28.
Article de Anglais | MEDLINE | ID: mdl-36903494

RÉSUMÉ

Porcine circovirus 2 (PCV2) infection is one of the most serious threats to the swine industry. While the disease can be prevented, to some extent, by commercial PCV2a vaccines, the evolving nature of PCV2 necessitates the development of a novel vaccine that can compete with the mutations of the virus. Thus, we have developed novel multiepitope vaccines based on the PCV2b variant. Three PCV2b capsid protein epitopes, together with a universal T helper epitope, were synthesized and formulated with five delivery systems/adjuvants: complete Freund's adjuvant, poly(methyl acrylate) (PMA), poly(hydrophobic amino acid), liposomes and rod-shaped polymeric nanoparticles built from polystyrene-poly(N-isopropylacrylamide)-poly(N-dimethylacrylamide). Mice were subcutaneously immunized with the vaccine candidates three times at three-week intervals. All vaccinated mice produced high antibody titters after three immunizations as analyzed by the enzyme-linked immunosorbent assay (ELISA), while mice vaccinated with PMA-adjuvanted vaccine elicited high antibody titers even after a single immunization. Thus, the multiepitope PCV2 vaccine candidates designed and examined here show strong potential for further development.


Sujet(s)
Circovirus , Maladies des porcs , Vaccins antiviraux , Suidae , Animaux , Souris , Anticorps antiviraux , Maladies des porcs/prévention et contrôle , Peptides , Épitopes , Adjuvants immunologiques
8.
Pharmaceutics ; 15(2)2023 Feb 10.
Article de Anglais | MEDLINE | ID: mdl-36839923

RÉSUMÉ

Human papilloma virus (HPV) is responsible for all cases of cervical cancer. While prophylactic vaccines are available, the development of peptide-based vaccines as a therapeutic strategy is still under investigation. In comparison with the traditional and currently used treatment strategies of chemotherapy and surgery, vaccination against HPV is a promising therapeutic option with fewer side effects. A peptide derived from the HPV-16 E7 protein, called 8Qm, in combination with adjuvants showed promise as a therapeutic vaccine. Here, the ability of polymerized natural amino acids to act as a self-adjuvating delivery system as a therapeutic vaccine was investigated for the first time. Thus, 8Qm was conjugated to polyleucine by standard solid-phase peptide synthesis and self-assembled into nanoparticles or incorporated in liposomes. The liposome bearing the 8Qm conjugate significantly increased mice survival and decreased tumor growth after a single immunization. Further, these liposomes eradicated seven-day-old well-established tumors in mice. Dendritic cell (DC)-targeting moieties were introduced to further enhance vaccine efficacy, and the newly designed liposomal vaccine was tested in mice bearing 11-day-old tumors. Interestingly, these DCs-targeting moieties did not significantly improve vaccine efficacy, whereas the simple liposomal formulation of 8Qm-polyleucine conjugate was still effective in tumor eradication. In summary, a peptide-based anticancer vaccine was developed that stimulated strong cellular immune responses without the help of a classical adjuvant.

9.
Vaccines (Basel) ; 11(2)2023 Jan 30.
Article de Anglais | MEDLINE | ID: mdl-36851183

RÉSUMÉ

Intranasal vaccine administration can overcome the disadvantages of injectable vaccines and present greater efficiency for mass immunization. However, the development of intranasal vaccines is challenged by poor mucosal immunogenicity of antigens and the limited availability of mucosal adjuvants. Here, we examined a number of self-adjuvanting liposomal systems for intranasal delivery of lipopeptide vaccine against group A Streptococcus (GAS). Among them, two liposome formulations bearing lipidated cell-penetrating peptide KALA and a new lipidated chitosan derivative (oleoyl-quaternized chitosan, OTMC) stimulated high systemic antibody titers in outbred mice. The antibodies were fully functional and were able to kill GAS bacteria. Importantly, OTMC was far more effective at stimulating antibody production than the classical immune-stimulating trimethyl chitosan formulation. In a simple physical mixture, OTMC also enhanced the immune responses of the tested vaccine, without the need for a liposome delivery system. The adjuvanting capacity of OTMC was further confirmed by its ability to stimulate cytokine production by dendritic cells. Thus, we discovered a new immune stimulant with promising properties for mucosal vaccine development.

10.
ACS Mater Lett ; 5(2): 565-573, 2023 Feb 06.
Article de Anglais | MEDLINE | ID: mdl-36776691

RÉSUMÉ

Application of antioxidant enzymes in medical or industrial processes is limited due to their high sensitivity to environmental conditions. Incorporation of such enzymes in nanostructures provides a promising route to obtain highly efficient and robust biocatalytic system to scavenge reactive oxygen species (ROS). Here, this question was addressed by confinement of superoxide dismutase (SOD), horseradish peroxidase (HRP), and catalase (CAT) enzymes into nanostructures containing polyelectrolyte building blocks (alginate (Alg) and trimethyl chitosan (TMC)) and delaminated layered double hydroxide (dLDH) nanoparticle support. The nanocomposite possessed excellent structural and colloidal stability, while antioxidant tests revealed that the enzymes remained active upon immobilization and the developed composite greatly reduced intracellular oxidative stress in two-dimensional cell cultures. Moreover, it effectively prevented hydrogen peroxide-induced double stranded DNA breaks, which is a common consequence of oxidative stress. The results provide important tools to design complex nanostructures with multienzymatic antioxidant activities for ROS scavenging.

11.
Tuberculosis (Edinb) ; 139: 102307, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36706503

RÉSUMÉ

According to the World Health Organization (WHO), tuberculosis (TB) is the leading cause of death triggered by a single infectious agent, worldwide. Bacillus Calmette-Guerin (BCG) is the only currently licensed anti-TB vaccine. However, other strategies, including modification of recombinant BCG vaccine, attenuated Mycobacterium tuberculosis (Mtb) mutant constructs, DNA and protein subunit vaccines, are under extensive investigation. As whole pathogen vaccines can trigger serious adverse reactions, most current strategies are focused on the development of safe anti-TB subunit vaccines; this is especially important given the rising TB infection rate in immunocompromised HIV patients. The whole Mtb genome has been mapped and major antigens have been identified; however, optimal vaccine delivery mode is still to be established. Isolated protein antigens are typically poorly immunogenic so adjuvants are required to induce strong and long-lasting immune responses. This article aims to review the developmental status of anti-TB subunit vaccine adjuvants.


Sujet(s)
Vaccins antituberculeux , Tuberculose , Développement de vaccin , Humains , Tuberculose/prévention et contrôle , Vaccins sous-unitaires , Adjuvants vaccinaux
12.
Pharmaceutics ; 14(10)2022 Oct 10.
Article de Anglais | MEDLINE | ID: mdl-36297584

RÉSUMÉ

Peptide-based subunit vaccines include only minimal antigenic determinants, and, therefore, are less likely to induce allergic immune responses and adverse effects compared to traditional vaccines. However, peptides are weakly immunogenic and susceptible to enzymatic degradation when administered on their own. Hence, we designed polyelectrolyte complex (PEC)-based delivery systems to protect peptide antigens from degradation and improve immunogenicity. Lipopeptide (LCP-1) bearing J8 B-cell epitope derived from Group A Streptococcus (GAS) M-protein was selected as the model peptide antigen. In the pilot study, LCP-1 incorporated in alginate/cross-linked polyarginine-J8-based PEC induced high J8-specific IgG antibody titres. The PEC system was then further modified to improve its immune stimulating capability. Of the formulations tested, PEC-4, bearing LCP-1, alginate and cross-linked polylysine, induced the highest antibody titres in BALB/c mice following subcutaneous immunisation. The antibodies produced were more opsonic than those induced by mice immunised with other PECs, and as opsonic as those induced by antigen adjuvanted with powerful complete Freund's adjuvant.

13.
J Control Release ; 351: 284-300, 2022 11.
Article de Anglais | MEDLINE | ID: mdl-36150579

RÉSUMÉ

Adjuvants and vaccine delivery systems are used widely to improve the efficacy of vaccines. Their primary roles are to protect antigen from degradation and allow its delivery and uptake by antigen presenting cells (APCs). Carbohydrates, including various structures/forms of mannose, have been broadly utilized to target carbohydrate binding receptors on APCs. This review summarizes basic functions of the immune system, focusing on the role of mannose receptors in antigen recognition by APCs. The most popular strategies to produce mannosylated vaccines via conjugation and formulation are presented. The efficacy of mannosylated vaccines is discussed in detail, taking into consideration factors, such as valency and number of mannose in mannose ligands, mannose density, length of spacers, special arrangement of mannose ligands, and routes of administration of mannosylated vaccines. The advantages and disadvantages of mannosylation strategy and future directions in the development of mannosylated vaccines are also debated.


Sujet(s)
Lectines liant le mannose , Mannose , Ligands , Lectines liant le mannose/métabolisme , Cellules présentatrices d'antigène , Systèmes de délivrance de médicaments
14.
Vaccines (Basel) ; 10(8)2022 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-36016100

RÉSUMÉ

Adjuvants and delivery systems are essential components of vaccines to increase immunogenicity against target antigens, particularly for peptide epitopes (poor immunogens). Emulsions, nanoparticles, and liposomes are commonly used as a delivery system for peptide-based vaccines. A Poly(hydrophobic amino acids) delivery system was previously conjugated to Group A Streptococcus (GAS)-derived peptide epitopes, allowing the conjugates to self-assemble into nanoparticles with self adjuvanting ability. Their hydrophobic amino acid tail also serves as an anchoring moiety for the peptide epitope, enabling it to be integrated into the liposome bilayer, to further boost the immunological responses. Polyleucine-based conjugates were anchored to cationic liposomes using the film hydration method and administered to mice subcutaneously. The polyleucine-peptide conjugate, its liposomal formulation, and simple liposomal encapsulation of GAS peptide epitope induced mucosal (saliva IgG) and systemic (serum IgG, IgG1 and IgG2c) immunity in mice. Polyleucine acted as a potent liposome anchoring portion, which stimulated the production of highly opsonic antibodies. The absence of polyleucine in the liposomal formulation (encapsulated GAS peptide) induced high levels of antibody titers, but with poor opsonic ability against GAS bacteria. However, the liposomal formulation of the conjugated vaccine was no more effective than conjugates alone self-assembled into nanoparticles.

15.
Biotechnol Adv ; 60: 108029, 2022 11.
Article de Anglais | MEDLINE | ID: mdl-36028180

RÉSUMÉ

Peptide-based subunit vaccines utilise minimal immunogenic components (i.e. peptides) to generate highly specific immune responses, without triggering adverse reactions. However, strong adjuvants and/or effective delivery systems must be incorporated into such vaccines, as peptide antigens cannot induce substantial immune responses on their own. Unfortunately, many adjuvants are too weak or too toxic to be used in combination with peptide antigens. These shortcomings have been addressed by the conjugation of peptide antigens with lipidic/ hydrophobic adjuvanting moieties. The conjugates have shown promising safety profiles and improved immunogenicity without the help of traditional adjuvants and have been efficient in inducing desired immune responses following various routes of administration, including subcutaneous, oral and intranasal. However, not only conjugation per se, but also component arrangement influences vaccine efficacy. This review highlights the importance of influence of the vaccine chemical structure modification on the immune responses generated. It discusses a variety of factors that affect the immunogenicity of peptide conjugates, including: i) self-adjuvanting moiety length and number; ii) the orientation of epitopes and self-adjuvanting moieties in the conjugate; iii) the presence of spacers between conjugated components; iv) multiepitopic arrangement; and v) the effect of chirality on vaccine efficacy.


Sujet(s)
Immunogénicité des vaccins , Peptides , Adjuvants immunologiques , Épitopes , Vaccins sous-unitaires
16.
Molecules ; 27(11)2022 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-35684571

RÉSUMÉ

It is beyond doubt that short peptides hold significant promise in bio-medicine, as the most versatile molecules, both structurally and functionally [...].


Sujet(s)
Médecine , Peptides , Peptides/composition chimique
17.
Drug Dev Res ; 83(6): 1251-1256, 2022 09.
Article de Anglais | MEDLINE | ID: mdl-35751566

RÉSUMÉ

COVID-19 pandemic has been the deadliest infectious disease outbreak since Spanish flu. The emerging variant lineages, decay of neutralizing antibodies, and occur of reinfections require the development of highly protective and safe vaccines. As currently approved COVID-19 vaccines that utilize virus-related genetic material are less than ideal, other vaccine types have been also widely investigated. Among them, peptide-based vaccines hold great promise in countering COVID-19 as they may overcome most of the shortcomings of RNA/DNA and protein vaccines. Two basic types of potential peptide vaccines can be developed. The first type are those which rely on cytotoxic T-cell (CTL) responses to kill infected host cells and stop the replication via employing CTL-epitopes as vaccine antigens. The second type of peptide vaccines are those that rely on B-cell peptide epitopes to trigger humoral response via generating SARS-CoV-2-specific antibodies to neutralize and/or opsonize the virus. We propose that combining both cellular and humoral immune responses would be highly protective. Here we discuss opportunities and challenges in the development of an effective and safe peptide-based vaccine against COVID-19.


Sujet(s)
COVID-19 , Pandémie de grippe de 1918-1919 , Vaccins antiviraux , Anticorps antiviraux , COVID-19/prévention et contrôle , Vaccins contre la COVID-19 , Déterminants antigéniques des lymphocytes B , Histoire du 20ème siècle , Humains , Pandémies/prévention et contrôle , SARS-CoV-2 , Vaccins sous-unitaires
18.
Pharmaceutics ; 14(4)2022 Apr 13.
Article de Anglais | MEDLINE | ID: mdl-35456690

RÉSUMÉ

The SARS-CoV-2 virus has caused a global crisis, resulting in 0.5 billion infections and over 6 million deaths as of March 2022. Fortunately, infection and hospitalization rates were curbed due to the rollout of DNA and mRNA vaccines. However, the efficacy of these vaccines significantly drops a few months post immunization, from 88% down to 47% in the case of the Pfizer BNT162 vaccine. The emergence of variant strains, especially delta and omicron, have also significantly reduced vaccine efficacy. We propose peptide vaccines as a potential solution to address the inadequacies of the current vaccines. Peptide vaccines can be easily modified to target emerging strains, have greater stability, and do not require cold-chain storage. We screened five peptide fragments (B1-B5) derived from the SARS-CoV-2 spike protein to identify neutralizing B-cell peptide antigens. We then investigated adjuvant systems for efficient stimulation of immune responses against the most promising peptide antigens, including liposomal formulations of polyleucine (L10) and polymethylacrylate (PMA), as well as classical adjuvants (CFA and MF59). Immune efficacy of formulations was evaluated using competitive ELISA, pseudovirion neutralization, and live virus neutralization assays. Unfortunately, peptide conjugation to L10 and PMA dramatically altered the secondary structure, resulting in low antibody neutralization efficacy. Of the peptides tested, only B3 administered with CFA or MF59 was highly immunogenic. Thus, a peptide vaccine relying on B3 may provide an attractive alternative to currently marketed vaccines.

19.
PLoS One ; 17(3): e0264961, 2022.
Article de Anglais | MEDLINE | ID: mdl-35275957

RÉSUMÉ

Malaria is a vector born parasitic disease causing millions of deaths every year. Despite the high mortality rate, an effective vaccine against this mosquito-borne infectious disease is yet to be developed. Up to date, RTS,S/AS01 is the only vaccine available for malaria prevention; however, its efficacy is low. Among a variety of malaria antigens, merozoite surface protein-1(MSP-1) and ring-infected erythrocyte surface antigen (RESA) have been proposed as promising candidates for malaria vaccine development. We developed peptide-based Plasmodium falciparum vaccine candidates that incorporated three previously reported conserved epitopes from MSP-1 and RESA into highly effective liposomal polyleucine delivery system. Indeed, MSP-1 and RESA-derived epitopes conjugated to polyleucine and formulated into liposomes induced higher epitope specific antibody titres. However, immunized mice failed to demonstrate protection in a rodent malaria challenge study with Plasmodium yoelii. In addition, we found that the three reported P. falciparum epitopes did not to share conformational properties and high sequence similarity with P. yoelii MSP-1 and RESA proteins, despite the epitopes were reported to protect mice against P. yoelii challenge.


Sujet(s)
Paludisme , Plasmodium , Adjuvants immunologiques , Animaux , Anticorps antiprotozoaires , Antigènes de protozoaire , Antigènes de surface , Épitopes , Liposomes , Paludisme/prévention et contrôle , Protéine-1 de surface du mérozoïte , Souris , Peptides , Plasmodium falciparum , Protéines de protozoaire , Vaccins sous-unitaires
20.
J Allergy Clin Immunol ; 150(1): 157-169.e10, 2022 07.
Article de Anglais | MEDLINE | ID: mdl-35278494

RÉSUMÉ

BACKGROUND: Approximately 400 million individuals are infected with hookworms globally. Protective vaccines are needed to prevent reinfections, which often occur after drug treatment in endemic areas. Ideal vaccines are highly efficacious and well tolerated, and do not present risks to patient safety. Peptide vaccines can generate specific, highly protective responses because they focus on minimal antigenic target(s) with a specific immunoprotective mechanism. Necator americanus aspartyl protease 1 (Na-APR-1) is one of the most promising hookworm vaccine antigens. The neutralizing epitope p3 (TSLIAGPKAQVEAIQKYIGAEL), together with universal the TH epitope P25 (KLIPNASLIENCTKAEL), has been used previously to produce peptide vaccines and was found to protect BALB/c mice against rodent hookworm infections, resulting in worm burden reductions of up to 98%. However, because of extensive digestion in the gastrointestinal tract, large oral vaccination doses were necessary to achieve this level of efficacy. OBJECTIVE: We sought to overcome the limitations of oral vaccine delivery and to investigate protective efficacy and immune correlates of protection. Herein, we examined 5 different peptide vaccines following intraperitoneal injection, to compare their efficacy with that of the clinical protein antigen APR-1. METHODS: BALB/c mice were immunized with p3-P25-based antigen that was adjuvanted with (1) lipid core peptide, (2) polymethyl methacrylate, (3) linear polyleucine, and (4) branched polyleucine (BL10), or with (5) CpG/aluminum hydroxide adjuvant (alum)-adjuvanted control and protein-based (6) CpG/alum-adjuvanted Na-APR-1. The mice sera, saliva, and feces were sampled for immune response evaluation. The immunized mice were further challenged via hookworm larvae infection, and protection was evaluated by conducting intestinal hookworm counts. RESULTS: BL10 and lipid core peptide generated the highest serum anti-Na-APR-1 IgG and fecal anti-APR-1 IgG titers, but only BL10 generated significant fecal anti-Na-APR-1 IgA titers. Upon challenge, immunization with CpG/alum-adjuvanted p3-P25, BL10, and lipid core peptide provided the highest worm burden reductions of 75%, 77%, and 59%, respectively, whereas the group immunized with Na-APR-1 had only modest worm reduction of 26%. The relationships between serum anti-Na-APR-1 IgG, fecal anti-Na-APR-1 IgA and IgG, and worm burden reduction were established with R2 values greater than or equal to 0.9, and the crucial role of both anti-Na-APR-1 IgG and IgA responses was identified. CONCLUSIONS: We demonstrated for the first time that p3-based vaccine candidates are safer and can deliver higher protection against hookworm infection compared with the clinical vaccine candidate, Na-APR-1.


Sujet(s)
Infections à ankylostomes , Vaccins sous-unitaires , Adjuvants immunologiques , Hydroxyde d'aluminium , Animaux , Épitopes , Infections à ankylostomes/prévention et contrôle , Immunoglobuline A , Immunoglobuline G , Lipides , Souris , Souris de lignée BALB C , Necator americanus , Vaccins sous-unitaires/effets indésirables
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...