Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 77
Filtrer
1.
bioRxiv ; 2024 Jul 07.
Article de Anglais | MEDLINE | ID: mdl-39005338

RÉSUMÉ

Meiotic recombination is a fundamental process that generates genetic diversity by creating new combinations of existing alleles. Although human crossovers have been studied at the pedigree, population and single-cell level, the more frequent non-crossover events that lead to gene conversion are harder to study, particularly at the individual level. Here we show that single high-fidelity long sequencing reads from sperm can capture both crossovers and non-crossovers, allowing effectively arbitrary sample sizes for analysis from one male. Using fifteen sperm samples from thirteen donors we demonstrate variation between and within donors for the rates of different types of recombination. Intriguingly, we observe a tendency for non-crossover gene conversions to occur upstream of nearby PRDM9 binding sites, whereas crossover locations have a slight downstream bias. We further provide evidence for two distinct non-crossover processes. One gives rise to the vast majority of non-crossovers with mean conversion tract length under 50bp, which we suggest is an outcome of standard PRDM9-induced meiotic recombination. In contrast ~2% of non-crossovers have much longer mean tract length, and potentially originate from the same process as complex events with more than two haplotype switches, which is not associated with PRDM9 binding sites and is also seen in somatic cells.

2.
Ann Rheum Dis ; 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38937070

RÉSUMÉ

OBJECTIVES: Systemic lupus erythematosus (SLE) shows a marked female bias in prevalence. X chromosome inactivation (XCI) is the mechanism which randomly silences one X chromosome to equalise gene expression between 46, XX females and 46, XY males. Though XCI is expected to result in a random pattern of mosaicism across tissues, some females display a significantly skewed ratio in immune cells, termed XCI-skew. We tested whether XCI was abnormal in females with SLE and hence contributes to sexual dimorphism. METHODS: We assayed XCI in whole blood DNA in 181 female SLE cases, 796 female healthy controls and 10 twin pairs discordant for SLE. Using regression modelling and intra-twin comparisons, we assessed the effect of SLE on XCI and combined clinical, cellular and genetic data via a polygenic score to explore underlying mechanisms. RESULTS: Accommodating the powerful confounder of age, XCI-skew was reduced in females with SLE compared with controls (p=1.3×10-5), with the greatest effect seen in those with more severe disease. Applying an XCI threshold of >80%, we observed XCI-skew in 6.6% of SLE cases compared with 22% of controls. This difference was not explained by differential white cell counts, medication or genetic susceptibility to SLE. Instead, XCI-skew correlated with a biomarker for type I interferon-regulated gene expression. CONCLUSIONS: These results refute current views on XCI-skew in autoimmunity and suggest, in lupus, XCI patterns of immune cells reflect the impact of disease state, specifically interferon signalling, on the haematopoietic stem cells from which they derive.

3.
J Agric Food Chem ; 72(23): 13439-13450, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38829321

RÉSUMÉ

The objective assessment of habitual (poly)phenol-rich diets in nutritional epidemiology studies remains challenging. This study developed and evaluated the metabolic signature of a (poly)phenol-rich dietary score (PPS) using a targeted metabolomics method comprising 105 representative (poly)phenol metabolites, analyzed in 24 h of urine samples collected from healthy volunteers. The metabolites that were significantly associated with PPS after adjusting for energy intake were selected to establish a metabolic signature using a combination of linear regression followed by ridge regression to estimate penalized weights for each metabolite. A metabolic signature comprising 51 metabolites was significantly associated with adherence to PPS in 24 h urine samples, as well as with (poly)phenol intake estimated from food frequency questionnaires and diaries. Internal and external data sets were used for validation, and plasma, spot urine, and 24 h urine samples were compared. The metabolic signature proposed here has the potential to accurately reflect adherence to (poly)phenol-rich diets, and may be used as an objective tool for the assessment of (poly)phenol intake.


Sujet(s)
Régime alimentaire , Polyphénols , Humains , Adulte , Femelle , Mâle , Adulte d'âge moyen , Polyphénols/métabolisme , Polyphénols/urine , Polyphénols/administration et posologie , Jeune adulte , Métabolomique ,
4.
bioRxiv ; 2023 Oct 27.
Article de Anglais | MEDLINE | ID: mdl-37961277

RÉSUMÉ

Complete characterization of the genetic effects on gene expression is needed to elucidate tissue biology and the etiology of complex traits. Here, we analyzed 2,344 subcutaneous adipose tissue samples and identified 34K conditionally distinct expression quantitative trait locus (eQTL) signals in 18K genes. Over half of eQTL genes exhibited at least two eQTL signals. Compared to primary signals, non-primary signals had lower effect sizes, lower minor allele frequencies, and less promoter enrichment; they corresponded to genes with higher heritability and higher tolerance for loss of function. Colocalization of eQTL with conditionally distinct genome-wide association study signals for 28 cardiometabolic traits identified 3,605 eQTL signals for 1,861 genes. Inclusion of non-primary eQTL signals increased colocalized signals by 46%. Among 30 genes with ≥2 pairs of colocalized signals, 21 showed a mediating gene dosage effect on the trait. Thus, expanded eQTL identification reveals more mechanisms underlying complex traits and improves understanding of the complexity of gene expression regulation.

5.
Clin Epigenetics ; 15(1): 166, 2023 10 19.
Article de Anglais | MEDLINE | ID: mdl-37858220

RÉSUMÉ

BACKGROUND: B vitamins such as folate (B9), B6, and B12 are key in one carbon metabolism, which generates methyl donors for DNA methylation. Several studies have linked differential methylation to self-reported intakes of folate and B12, but these estimates can be imprecise, while metabolomic biomarkers can offer an objective assessment of dietary intakes. We explored blood metabolomic biomarkers of folate and vitamins B6 and B12, to carry out epigenome-wide analyses across up to three European cohorts. Associations between self-reported habitual daily B vitamin intakes and 756 metabolites (Metabolon Inc.) were assessed in serum samples from 1064 UK participants from the TwinsUK cohort. The identified B vitamin metabolomic biomarkers were then used in epigenome-wide association tests with fasting blood DNA methylation levels at 430,768 sites from the Infinium HumanMethylation450 BeadChip in blood samples from 2182 European participants from the TwinsUK and KORA cohorts. Candidate signals were explored for metabolite associations with gene expression levels in a subset of the TwinsUK sample (n = 297). Metabolomic biomarker epigenetic associations were also compared with epigenetic associations of self-reported habitual B vitamin intakes in samples from 2294 European participants. RESULTS: Eighteen metabolites were associated with B vitamin intakes after correction for multiple testing (Bonferroni-adj. p < 0.05), of which 7 metabolites were available in both cohorts and tested for epigenome-wide association. Three metabolites - pipecolate (metabolomic biomarker of B6 and folate intakes), pyridoxate (marker of B6 and folate) and docosahexaenoate (DHA, marker of B6) - were associated with 10, 3 and 1 differentially methylated positions (DMPs), respectively. The strongest association was observed between DHA and DMP cg03440556 in the SCD gene (effect = 0.093 ± 0.016, p = 4.07E-09). Pyridoxate, a catabolic product of vitamin B6, was inversely associated with CpG methylation near the SLC1A5 gene promoter region (cg02711608 and cg22304262) and with SLC7A11 (cg06690548), but not with corresponding changes in gene expression levels. The self-reported intake of folate and vitamin B6 had consistent but non-significant associations with the epigenetic signals. CONCLUSION: Metabolomic biomarkers are a valuable approach to investigate the effects of dietary B vitamin intake on the human epigenome.


Sujet(s)
Complexe vitaminique B , Humains , Vitamine B12 , Épigénome , Méthylation de l'ADN , Acide folique , Vitamine B6 , Marqueurs biologiques , Antigènes mineurs d'histocompatibilité , Système ASC de transport d'acides aminés
6.
Sci Rep ; 13(1): 13874, 2023 08 24.
Article de Anglais | MEDLINE | ID: mdl-37620324

RÉSUMÉ

Gaining insight into the genetic regulation of gene expression in human brain is key to the interpretation of genome-wide association studies for major neurological and neuropsychiatric diseases. Expression quantitative trait loci (eQTL) analyses have largely been used to achieve this, providing valuable insights into the genetic regulation of steady-state RNA in human brain, but not distinguishing between molecular processes regulating transcription and stability. RNA quantification within cellular fractions can disentangle these processes in cell types and tissues which are challenging to model in vitro. We investigated the underlying molecular processes driving the genetic regulation of gene expression specific to a cellular fraction using allele-specific expression (ASE). Applying ASE analysis to genomic and transcriptomic data from paired nuclear and cytoplasmic fractions of anterior prefrontal cortex, cerebellar cortex and putamen tissues from 4 post-mortem neuropathologically-confirmed control human brains, we demonstrate that a significant proportion of genetic regulation of gene expression occurs post-transcriptionally in the cytoplasm, with genes undergoing this form of regulation more likely to be synaptic. These findings have implications for understanding the structure of gene expression regulation in human brain, and importantly the interpretation of rapidly growing single-nucleus brain RNA-sequencing and eQTL datasets, where cytoplasm-specific regulatory events could be missed.


Sujet(s)
Régulation de l'expression des gènes , Étude d'association pangénomique , Humains , Fractions subcellulaires , Noyau du tractus solitaire , ARN
7.
Science ; 380(6641): eabn7113, 2023 04 14.
Article de Anglais | MEDLINE | ID: mdl-37053313

RÉSUMÉ

Postzygotic mutations (PZMs) begin to accrue in the human genome immediately after fertilization, but how and when PZMs affect development and lifetime health remain unclear. To study the origins and functional consequences of PZMs, we generated a multitissue atlas of PZMs spanning 54 tissue and cell types from 948 donors. Nearly half the variation in mutation burden among tissue samples can be explained by measured technical and biological effects, and 9% can be attributed to donor-specific effects. Through phylogenetic reconstruction of PZMs, we found that their type and predicted functional impact vary during prenatal development, across tissues, and through the germ cell life cycle. Thus, methods for interpreting effects across the body and the life span are needed to fully understand the consequences of genetic variants.


Sujet(s)
Analyse de mutations d'ADN , Longévité , Zygote , Femelle , Humains , Longévité/génétique , Mutation , Phylogenèse , RNA-Seq
8.
PLoS Genet ; 19(2): e1010556, 2023 02.
Article de Anglais | MEDLINE | ID: mdl-36802379

RÉSUMÉ

X-chromosome inactivation (XCI) silences one X in female cells to balance sex-differences in X-dosage. A subset of X-linked genes escape XCI, but the extent to which this phenomenon occurs and how it varies across tissues and in a population is as yet unclear. To characterize incidence and variability of escape across individuals and tissues, we conducted a transcriptomic study of escape in adipose, skin, lymphoblastoid cell lines and immune cells in 248 healthy individuals exhibiting skewed XCI. We quantify XCI escape from a linear model of genes' allelic fold-change and XIST-based degree of XCI skewing. We identify 62 genes, including 19 lncRNAs, with previously unknown patterns of escape. We find a range of tissue-specificity, with 11% of genes escaping XCI constitutively across tissues and 23% demonstrating tissue-restricted escape, including cell type-specific escape across immune cells of the same individual. We also detect substantial inter-individual variability in escape. Monozygotic twins share more similar escape than dizygotic twins, indicating that genetic factors may underlie inter-individual differences in escape. However, discordant escape also occurs within monozygotic co-twins, suggesting environmental factors also influence escape. Altogether, these data indicate that XCI escape is an under-appreciated source of transcriptional differences, and an intricate phenotype impacting variable trait expressivity in females.


Sujet(s)
Chromosomes X humains , Inactivation du chromosome X , Humains , Femelle , Inactivation du chromosome X/génétique , Chromosomes X humains/génétique , Gènes liés au chromosome X/génétique , Jumeaux monozygotes/génétique , Phénotype
9.
J Bone Miner Res ; 38(2): 326-334, 2023 02.
Article de Anglais | MEDLINE | ID: mdl-36458982

RÉSUMÉ

Proton pump inhibitors (PPIs) are among the most used drugs in the UK. PPI use has been associated with decreased bone mineral density (BMD) and increased fracture risk, although these results have been inconsistent. We hypothesized that PPI could modulate BMD by altering gut and/or host systemic metabolic environments. Using data from more than 5000 British male and female individuals, we confirmed that PPI use is associated with decreased lumbar spine and total hip BMD. This effect was not mediated through the gut microbiome. We suggest here that PPI use may influence total hip BMD, both directly and indirectly, via plasma metabolites involved in the sex hormone pathway. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Sujet(s)
Densité osseuse , Fractures osseuses , Humains , Mâle , Femelle , Inhibiteurs de la pompe à protons , Vertèbres lombales , Royaume-Uni
10.
Elife ; 112022 11 22.
Article de Anglais | MEDLINE | ID: mdl-36412098

RÉSUMÉ

Background: Ageing is a heterogenous process characterised by cellular and molecular hallmarks, including changes to haematopoietic stem cells and is a primary risk factor for chronic diseases. X chromosome inactivation (XCI) randomly transcriptionally silences either the maternal or paternal X in each cell of 46, XX females to balance the gene expression with 46, XY males. Age acquired XCI-skew describes the preferential selection of cells across a tissue resulting in an imbalance of XCI, which is particularly prevalent in blood tissues of ageing females, and yet its clinical consequences are unknown. Methods: We assayed XCI in 1575 females from the TwinsUK population cohort using DNA extracted from whole blood. We employed prospective, cross-sectional, and intra-twin study designs to characterise the relationship of XCI-skew with molecular and cellular measures of ageing, cardiovascular disease risk, and cancer diagnosis. Results: We demonstrate that XCI-skew is independent of traditional markers of biological ageing and is associated with a haematopoietic bias towards the myeloid lineage. Using an atherosclerotic cardiovascular disease risk score, which captures traditional risk factors, XCI-skew is associated with an increased cardiovascular disease risk both cross-sectionally and within XCI-skew discordant twin pairs. In a prospective 10 year follow-up study, XCI-skew is predictive of future cancer incidence. Conclusions: Our study demonstrates that age acquired XCI-skew captures changes to the haematopoietic stem cell population and has clinical potential as a unique biomarker of chronic disease risk. Funding: KSS acknowledges funding from the Medical Research Council [MR/M004422/1 and MR/R023131/1]. JTB acknowledges funding from the ESRC [ES/N000404/1]. MM acknowledges funding from the National Institute for Health Research (NIHR)-funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. TwinsUK is funded by the Wellcome Trust, Medical Research Council, European Union, Chronic Disease Research Foundation (CDRF), Zoe Global Ltd and the National Institute for Health Research (NIHR)-funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London.


Sujet(s)
Maladies cardiovasculaires , Inactivation du chromosome X , Femelle , Humains , Mâle , Maladies cardiovasculaires/génétique , Études transversales , Études de suivi , , Études prospectives
11.
Mol Metab ; 65: 101589, 2022 11.
Article de Anglais | MEDLINE | ID: mdl-36064109

RÉSUMÉ

OBJECTIVES: Obesity in humans and mice is associated with elevated levels of two hormones responsive to cellular stress, namely GDF15 and FGF21. Over-expression of each of these is associated with weight loss and beneficial metabolic changes but where they are secreted from and what they are required for physiologically in the context of overfeeding remains unclear. METHODS: Here we used tissue selective knockout mouse models and human transcriptomics to determine the source of circulating GDF15 in obesity. We then generated and characterized the metabolic phenotypes of GDF15/FGF21 double knockout mice. RESULTS: Circulating GDF15 and FGF21 are both largely derived from the liver, rather than adipose tissue or skeletal muscle, in obese states. Combined whole body deletion of FGF21 and GDF15 does not result in any additional weight gain in response to high fat feeding but it does result in significantly greater hepatic steatosis and insulin resistance than that seen in GDF15 single knockout mice. CONCLUSIONS: Collectively the data suggest that overfeeding activates a stress response in the liver which is the major source of systemic rises in GDF15 and FGF21. These hormones then activate pathways which reduce this metabolic stress.


Sujet(s)
Stéatose hépatique , Insulinorésistance , Animaux , Poids , Stéatose hépatique/génétique , Stéatose hépatique/métabolisme , Facteurs de croissance fibroblastique , Facteur-15 de croissance et de différenciation/génétique , Hormones , Humains , Insulinorésistance/génétique , Souris , Souris knockout , Obésité/génétique , Obésité/métabolisme
12.
Genome Med ; 14(1): 75, 2022 07 18.
Article de Anglais | MEDLINE | ID: mdl-35843982

RÉSUMÉ

BACKGROUND: There is considerable evidence for the importance of the DNA methylome in metabolic health, for example, a robust methylation signature has been associated with body mass index (BMI). However, visceral fat (VF) mass accumulation is a greater risk factor for metabolic disease than BMI alone. In this study, we dissect the subcutaneous adipose tissue (SAT) methylome signature relevant to metabolic health by focusing on VF as the major risk factor of metabolic disease. We integrate results with genetic, blood methylation, SAT gene expression, blood metabolomic, dietary intake and metabolic phenotype data to assess and quantify genetic and environmental drivers of the identified signals, as well as their potential functional roles. METHODS: Epigenome-wide association analyses were carried out to determine visceral fat mass-associated differentially methylated positions (VF-DMPs) in SAT samples from 538 TwinsUK participants. Validation and replication were performed in 333 individuals from 3 independent cohorts. To assess functional impacts of the VF-DMPs, the association between VF and gene expression was determined at the genes annotated to the VF-DMPs and an association analysis was carried out to determine whether methylation at the VF-DMPs is associated with gene expression. Further epigenetic analyses were carried out to compare methylation levels at the VF-DMPs as the response variables and a range of different metabolic health phenotypes including android:gynoid fat ratio (AGR), lipids, blood metabolomic profiles, insulin resistance, T2D and dietary intake variables. The results from all analyses were integrated to identify signals that exhibit altered SAT function and have strong relevance to metabolic health. RESULTS: We identified 1181 CpG positions in 788 genes to be differentially methylated with VF (VF-DMPs) with significant enrichment in the insulin signalling pathway. Follow-up cross-omic analysis of VF-DMPs integrating genetics, gene expression, metabolomics, diet, and metabolic traits highlighted VF-DMPs located in 9 genes with strong relevance to metabolic disease mechanisms, with replication of signals in FASN, SREBF1, TAGLN2, PC and CFAP410. PC methylation showed evidence for mediating effects of diet on VF. FASN DNA methylation exhibited putative causal effects on VF that were also strongly associated with insulin resistance and methylation levels in FASN better classified insulin resistance (AUC=0.91) than BMI or VF alone. CONCLUSIONS: Our findings help characterise the adiposity-associated methylation signature of SAT, with insights for metabolic disease risk.


Sujet(s)
Insulinorésistance , Indice de masse corporelle , Méthylation de l'ADN , Régime alimentaire , Épigenèse génétique , Épigénome , Humains , Insulinorésistance/génétique
13.
Int J Obes (Lond) ; 46(8): 1478-1486, 2022 08.
Article de Anglais | MEDLINE | ID: mdl-35589964

RÉSUMÉ

BACKGROUND: COVID-19 severity varies widely. Although some demographic and cardio-metabolic factors, including age and obesity, are associated with increasing risk of severe illness, the underlying mechanism(s) are uncertain. SUBJECTS/METHODS: In a meta-analysis of three independent studies of 1471 participants in total, we investigated phenotypic and genetic factors associated with subcutaneous adipose tissue expression of Angiotensin I Converting Enzyme 2 (ACE2), measured by RNA-Seq, which acts as a receptor for SARS-CoV-2 cellular entry. RESULTS: Lower adipose tissue ACE2 expression was associated with multiple adverse cardio-metabolic health indices, including type 2 diabetes (T2D) (P = 9.14 × 10-6), obesity status (P = 4.81 × 10-5), higher serum fasting insulin (P = 5.32 × 10-4), BMI (P = 3.94 × 10-4), and lower serum HDL levels (P = 1.92 × 10-7). ACE2 expression was also associated with estimated proportions of cell types in adipose tissue: lower expression was associated with a lower proportion of microvascular endothelial cells (P = 4.25 × 10-4) and higher proportion of macrophages (P = 2.74 × 10-5). Despite an estimated heritability of 32%, we did not identify any proximal or distal expression quantitative trait loci (eQTLs) associated with adipose tissue ACE2 expression. CONCLUSIONS: Our results demonstrate that individuals with cardio-metabolic features known to increase risk of severe COVID-19 have lower background ACE2 levels in this highly relevant tissue. Reduced adipose tissue ACE2 expression may contribute to the pathophysiology of cardio-metabolic diseases, as well as the associated increased risk of severe COVID-19.


Sujet(s)
Tissu adipeux , Angiotensin-converting enzyme 2 , COVID-19 , Tissu adipeux/métabolisme , Angiotensin-converting enzyme 2/génétique , Angiotensin-converting enzyme 2/métabolisme , COVID-19/complications , COVID-19/génétique , Facteurs de risque cardiométabolique , Diabète de type 2/génétique , Cellules endothéliales/métabolisme , Humains , Obésité , SARS-CoV-2
14.
J Clin Endocrinol Metab ; 107(4): 1065-1077, 2022 03 24.
Article de Anglais | MEDLINE | ID: mdl-34875679

RÉSUMÉ

CONTEXT: Biological and translational insights from large-scale, array-based genetic studies of fat distribution, a key determinant of metabolic health, have been limited by the difficulty in linking predominantly noncoding variants to specific gene targets. Rare coding variant analyses provide greater confidence that a specific gene is involved, but do not necessarily indicate whether gain or loss of function (LoF) would be of most therapeutic benefit. OBJECTIVE: This work aimed to identify genes/proteins involved in determining fat distribution. METHODS: We combined the power of genome-wide analysis of array-based rare, nonsynonymous variants in 450 562 individuals in the UK Biobank with exome-sequence-based rare LoF gene burden testing in 184 246 individuals. RESULTS: The data indicate that the LoF of 4 genes (PLIN1 [LoF variants, P = 5.86 × 10-7], INSR [LoF variants, P = 6.21 × 10-7], ACVR1C [LoF + moderate impact variants, P = 1.68 × 10-7; moderate impact variants, P = 4.57 × 10-7], and PDE3B [LoF variants, P = 1.41 × 10-6]) is associated with a beneficial effect on body mass index-adjusted waist-to-hip ratio and increased gluteofemoral fat mass, whereas LoF of PLIN4 (LoF variants, P = 5.86 × 10-7 adversely affects these parameters. Phenotypic follow-up suggests that LoF of PLIN1, PDE3B, and ACVR1C favorably affects metabolic phenotypes (eg, triglycerides [TGs] and high-density lipoprotein [HDL] cholesterol concentrations) and reduces the risk of cardiovascular disease, whereas PLIN4 LoF has adverse health consequences. INSR LoF is associated with lower TG and HDL levels but may increase the risk of type 2 diabetes. CONCLUSION: This study robustly implicates these genes in the regulation of fat distribution, providing new and in some cases somewhat counterintuitive insight into the potential consequences of targeting these molecules therapeutically.


Sujet(s)
Diabète de type 2 , Récepteur activine, type 1/génétique , Répartition du tissu adipeux , Diabète de type 2/génétique , Exome , Variation génétique , Étude d'association pangénomique , Humains
15.
Sci Rep ; 11(1): 1932, 2021 01 21.
Article de Anglais | MEDLINE | ID: mdl-33479282

RÉSUMÉ

Insulin is an essential hormone that regulates glucose homeostasis and metabolism. Insulin resistance (IR) arises when tissues fail to respond to insulin, and it leads to serious health problems including Type 2 Diabetes (T2D). Obesity is a major contributor to the development of IR and T2D. We previously showed that gene expression of alcohol dehydrogenase 1B (ADH1B) was inversely correlated with obesity and IR in subcutaneous adipose tissue of Mexican Americans. In the current study, a meta-analysis of the relationship between ADH1B expression and BMI in Mexican Americans, African Americans, Europeans, and Pima Indians verified that BMI was increased with decreased ADH1B expression. Using established human subcutaneous pre-adipocyte cell lines derived from lean (BMI < 30 kg m-2) or obese (BMI ≥ 30 kg m-2) donors, we found that ADH1B protein expression increased substantially during differentiation, and overexpression of ADH1B inhibited fatty acid binding protein expression. Mature adipocytes from lean donors expressed ADH1B at higher levels than obese donors. Insulin further induced ADH1B protein expression as well as enzyme activity. Knockdown of ADH1B expression decreased insulin-stimulated glucose uptake. Our findings suggest that ADH1B is involved in the proper development and metabolic activity of adipose tissues and this function is suppressed by obesity.


Sujet(s)
Alcohol dehydrogenase/génétique , Diabète de type 2/génétique , Insuline/métabolisme , Obésité/génétique , Adipocytes/métabolisme , Tissu adipeux/métabolisme , Adulte , Sujet âgé , Sujet âgé de 80 ans ou plus , Indice de masse corporelle , Diabète de type 2/métabolisme , Diabète de type 2/anatomopathologie , Humains , Insulinorésistance/génétique , Américain origine mexicaine/génétique , Adulte d'âge moyen , Obésité/métabolisme , Obésité/anatomopathologie , Graisse sous-cutanée/métabolisme
16.
Age Ageing ; 50(1): 40-48, 2021 01 08.
Article de Anglais | MEDLINE | ID: mdl-32986799

RÉSUMÉ

BACKGROUND: Frailty, increased vulnerability to physiological stressors, is associated with adverse outcomes. COVID-19 exhibits a more severe disease course in older, comorbid adults. Awareness of atypical presentations is critical to facilitate early identification. OBJECTIVE: To assess how frailty affects presenting COVID-19 symptoms in older adults. DESIGN: Observational cohort study of hospitalised older patients and self-report data for community-based older adults. SETTING: Admissions to St Thomas' Hospital, London with laboratory-confirmed COVID-19. Community-based data for older adults using the COVID Symptom Study mobile application. SUBJECTS: Hospital cohort: patients aged 65 and over (n = 322); unscheduled hospital admission between 1 March 2020 and 5 May 2020; COVID-19 confirmed by RT-PCR of nasopharyngeal swab. Community-based cohort: participants aged 65 and over enrolled in the COVID Symptom Study (n = 535); reported test-positive for COVID-19 from 24 March (application launch) to 8 May 2020. METHODS: Multivariable logistic regression analysis performed on age-matched samples from hospital and community-based cohorts to ascertain association of frailty with symptoms of confirmed COVID-19. RESULTS: Hospital cohort: significantly higher prevalence of probable delirium in the frail sample, with no difference in fever or cough. Community-based cohort: significantly higher prevalence of possible delirium in frailer, older adults and fatigue and shortness of breath. CONCLUSIONS: This is the first study demonstrating higher prevalence of probable delirium as a COVID-19 symptom in older adults with frailty compared to other older adults. This emphasises need for systematic frailty assessment and screening for delirium in acutely ill older patients in hospital and community settings. Clinicians should suspect COVID-19 in frail adults with delirium.


Sujet(s)
COVID-19 , Délire avec confusion , Fragilité , Appréciation des risques/méthodes , SARS-CoV-2/isolement et purification , Sujet âgé , COVID-19/épidémiologie , COVID-19/psychologie , COVID-19/thérapie , Détection de l'acide nucléique du virus de la COVID-19/méthodes , Détection de l'acide nucléique du virus de la COVID-19/statistiques et données numériques , Études de cohortes , Délire avec confusion/diagnostic , Délire avec confusion/épidémiologie , Délire avec confusion/étiologie , Femelle , Personne âgée fragile , Fragilité/diagnostic , Fragilité/épidémiologie , Fragilité/étiologie , Évaluation gériatrique/méthodes , Hospitalisation/statistiques et données numériques , Humains , Londres/épidémiologie , Mâle , Prévalence , Facteurs de risque
17.
Commun Biol ; 3(1): 755, 2020 12 11.
Article de Anglais | MEDLINE | ID: mdl-33311586

RÉSUMÉ

Nuclear cataract is the most common type of age-related cataract and a leading cause of blindness worldwide. Age-related nuclear cataract is heritable (h2 = 0.48), but little is known about specific genetic factors underlying this condition. Here we report findings from the largest to date multi-ethnic meta-analysis of genome-wide association studies (discovery cohort N = 14,151 and replication N = 5299) of the International Cataract Genetics Consortium. We confirmed the known genetic association of CRYAA (rs7278468, P = 2.8 × 10-16) with nuclear cataract and identified five new loci associated with this disease: SOX2-OT (rs9842371, P = 1.7 × 10-19), TMPRSS5 (rs4936279, P = 2.5 × 10-10), LINC01412 (rs16823886, P = 1.3 × 10-9), GLTSCR1 (rs1005911, P = 9.8 × 10-9), and COMMD1 (rs62149908, P = 1.2 × 10-8). The results suggest a strong link of age-related nuclear cataract with congenital cataract and eye development genes, and the importance of common genetic variants in maintaining crystalline lens integrity in the aging eye.


Sujet(s)
Cataracte/étiologie , Prédisposition génétique à une maladie , Variation génétique , Facteurs de transcription SOX-B1/génétique , Allèles , Cataracte/diagnostic , Études d'associations génétiques , Étude d'association pangénomique , Génotype , Humains , Polymorphisme de nucléotide simple
18.
Science ; 369(6509)2020 09 11.
Article de Anglais | MEDLINE | ID: mdl-32913075

RÉSUMÉ

The Genotype-Tissue Expression (GTEx) project has identified expression and splicing quantitative trait loci in cis (QTLs) for the majority of genes across a wide range of human tissues. However, the functional characterization of these QTLs has been limited by the heterogeneous cellular composition of GTEx tissue samples. We mapped interactions between computational estimates of cell type abundance and genotype to identify cell type-interaction QTLs for seven cell types and show that cell type-interaction expression QTLs (eQTLs) provide finer resolution to tissue specificity than bulk tissue cis-eQTLs. Analyses of genetic associations with 87 complex traits show a contribution from cell type-interaction QTLs and enables the discovery of hundreds of previously unidentified colocalized loci that are masked in bulk tissue.


Sujet(s)
Régulation de l'expression des gènes , Locus de caractère quantitatif , Transcriptome , Cellules/métabolisme , Humains , Spécificité d'organe , ARN long non codant/génétique
19.
medRxiv ; 2020 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-32817962

RÉSUMÉ

COVID-19 severity has varied widely, with demographic and cardio-metabolic factors increasing risk of severe reactions to SARS-CoV-2 infection, but the underlying mechanisms for this remain uncertain. We investigated phenotypic and genetic factors associated with subcutaneous adipose tissue expression of Angiotensin I Converting Enzyme 2 ( ACE2 ), which has been shown to act as a receptor for SARS-CoV-2 cellular entry. In a meta-analysis of three independent studies including up to 1,471 participants, lower adipose tissue ACE2 expression was associated with adverse cardio-metabolic health indices including type 2 diabetes (T2D) and obesity status, higher serum fasting insulin and BMI, and lower serum HDL levels (P<5.32x10 -4 ). ACE2 expression levels were also associated with estimated proportions of cell types in adipose tissue; lower ACE2 expression was associated with a lower proportion of microvascular endothelial cells (P=4.25x10 -4 ) and higher macrophage proportion (P=2.74x10 -5 ), suggesting a link to inflammation. Despite an estimated heritability of 32%, we did not identify any proximal or distal genetic variants (eQTLs) associated with adipose tissue ACE2 expression. Our results demonstrate that at-risk individuals have lower background ACE2 levels in this highly relevant tissue. Further studies will be required to establish how this may contribute to increased COVID-19 severity.

20.
Sci Transl Med ; 12(555)2020 08 05.
Article de Anglais | MEDLINE | ID: mdl-32759275

RÉSUMÉ

Obesity is heightened during aging, and although the estrogen receptor α (ERα) has been implicated in the prevention of obesity, its molecular actions in adipocytes remain inadequately understood. Here, we show that adipose tissue ESR1/Esr1 expression inversely associated with adiposity and positively associated with genes involved in mitochondrial metabolism and markers of metabolic health in 700 Finnish men and 100 strains of inbred mice from the UCLA Hybrid Mouse Diversity Panel. To determine the anti-obesity actions of ERα in fat, we selectively deleted Esr1 from white and brown adipocytes in mice. In white adipose tissue, Esr1 controlled oxidative metabolism by restraining the targeted elimination of mitochondria via the E3 ubiquitin ligase parkin. mtDNA content was elevated, and adipose tissue mass was reduced in adipose-selective parkin knockout mice. In brown fat centrally involved in body temperature maintenance, Esr1 was requisite for both mitochondrial remodeling by dynamin-related protein 1 (Drp1) and uncoupled respiration thermogenesis by uncoupled protein 1 (Ucp1). In both white and brown fat of female mice and adipocytes in culture, mitochondrial dysfunction in the context of Esr1 deletion was paralleled by a reduction in the expression of the mtDNA polymerase γ subunit Polg1 We identified Polg1 as an ERα target gene by showing that ERα binds the Polg1 promoter to control its expression in 3T3L1 adipocytes. These findings support strategies leveraging ERα action on mitochondrial function in adipocytes to combat obesity and metabolic dysfunction.


Sujet(s)
Adipocytes bruns , Récepteur alpha des oestrogènes , Adipocytes bruns/métabolisme , Adipocytes blancs/métabolisme , Tissu adipeux brun/métabolisme , Animaux , Récepteur alpha des oestrogènes/génétique , Récepteur alpha des oestrogènes/métabolisme , Femelle , Souris , Mitochondries/métabolisme , Protéines mitochondriales/métabolisme , Thermogenèse , Protéine-1 de découplage/génétique , Protéine-1 de découplage/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...