Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 23
Filtrer
1.
Magn Reson Med ; 2024 May 10.
Article de Anglais | MEDLINE | ID: mdl-38726472

RÉSUMÉ

PURPOSE: To characterize the dependence of Xe-MRI gas transfer metrics upon age, sex, and lung volume in a group of healthy volunteers. METHODS: Sixty-five subjects with no history of chronic lung disease were assessed with 129Xe-MRI using a four-echo 3D radial spectroscopic imaging sequence and a dose of xenon titrated according to subject height that was inhaled from a lung volume of functional residual capacity (FRC). Imaging was repeated in 34 subjects at total lung capacity (TLC). Regional maps of the fractions of dissolved xenon in red blood cells (RBC), membrane (M), and airspace (Gas) were acquired at an isotropic resolution of 2 cm, from which global averages of the ratios RBC:M, RBC:Gas, and M:Gas were computed. RESULTS: Data from 26 males and 36 females with a median age of 43 y (range: 20-69 y) were of sufficient quality to analyze. Age (p = 0.0006) and sex (p < 0.0001) were significant predictors for RBC:M, and a linear regression showed higher values and steeper decline in males: RBC:M(Males) = -0.00362 × Age + 0.60 (p = 0.01, R2 = 0.25); RBC:M(Females) = -0.00170 × Age + 0.44 (p = 0.02, R2 = 0.15). Similarly, age and sex were significant predictors for RBC:Gas but not for M:Gas. RBC:M, M:Gas and RBC:Gas were significantly lower at TLC than at FRC (plus inhaled volume), with an average 9%, 30% and 35% decrease, respectively. CONCLUSION: Expected age and sex dependence of pulmonary function concurs with 129Xe RBC:M imaging results, demonstrating that these variables must be considered when reporting Xe-MRI metrics. Xenon doses and breathing maneuvers should be controlled due to the strong dependence of Xe-MRI metrics upon lung volume.

2.
ERJ Open Res ; 9(4)2023 Jul.
Article de Anglais | MEDLINE | ID: mdl-37650085

RÉSUMÉ

Background: Hyperpolarised 129-xenon (129Xe) magnetic resonance imaging (MRI) shows promise in monitoring the progression of idiopathic pulmonary fibrosis (IPF) due to the lack of ionising radiation and the ability to quantify functional impairment. Diffusion-weighted (DW)-MRI with hyperpolarised gases can provide information about lung microstructure. The aims were to compare 129Xe DW-MRI measurements with pulmonary function tests (PFTs), and to assess whether they can detect early signs of disease progression in patients with newly diagnosed IPF. Methods: This is a prospective, single-centre, observational imaging study of patients presenting with IPF to Northern General Hospital (Sheffield, UK). Hyperpolarised 129Xe DW-MRI was performed at 1.5 T on a whole-body General Electric HDx scanner and PFTs were performed on the same day as the MRI scan. Results: There was an increase in global 129Xe apparent diffusion coefficient (ADC) between the baseline and 12-month visits (mean 0.043 cm2·s-1, 95% CI 0.040-0.047 cm2·s-1 versus mean 0.045 cm2·s-1, 95% CI 0.040-0.049 cm2·s-1; p=0.044; n=20), with no significant change in PFTs over the same time period. There was also an increase in 129Xe ADC in the lower zone (p=0.027), and an increase in 129Xe mean acinar dimension in the lower zone (p=0.033) between the baseline and 12-month visits. 129Xe DW-MRI measurements correlated strongly with diffusing capacity of the lung for carbon monoxide (% predicted), transfer coefficient of the lung for carbon monoxide (KCO) and KCO (% predicted). Conclusions: 129Xe DW-MRI measurements appear to be sensitive to early changes of microstructural disease that are consistent with progression in IPF at 12 months. As new drug treatments are developed, the ability to quantify subtle changes using 129Xe DW-MRI could be particularly valuable.

3.
Sci Rep ; 13(1): 11273, 2023 07 12.
Article de Anglais | MEDLINE | ID: mdl-37438406

RÉSUMÉ

Functional lung imaging modalities such as hyperpolarized gas MRI ventilation enable visualization and quantification of regional lung ventilation; however, these techniques require specialized equipment and exogenous contrast, limiting clinical adoption. Physiologically-informed techniques to map proton (1H)-MRI ventilation have been proposed. These approaches have demonstrated moderate correlation with hyperpolarized gas MRI. Recently, deep learning (DL) has been used for image synthesis applications, including functional lung image synthesis. Here, we propose a 3D multi-channel convolutional neural network that employs physiologically-informed ventilation mapping and multi-inflation structural 1H-MRI to synthesize 3D ventilation surrogates (PhysVENeT). The dataset comprised paired inspiratory and expiratory 1H-MRI scans and corresponding hyperpolarized gas MRI scans from 170 participants with various pulmonary pathologies. We performed fivefold cross-validation on 150 of these participants and used 20 participants with a previously unseen pathology (post COVID-19) for external validation. Synthetic ventilation surrogates were evaluated using voxel-wise correlation and structural similarity metrics; the proposed PhysVENeT framework significantly outperformed conventional 1H-MRI ventilation mapping and other DL approaches which did not utilize structural imaging and ventilation mapping. PhysVENeT can accurately reflect ventilation defects and exhibits minimal overfitting on external validation data compared to DL approaches that do not integrate physiologically-informed mapping.


Sujet(s)
COVID-19 , Apprentissage profond , Humains , Respiration , Imagerie par résonance magnétique , Protons , Poumon/imagerie diagnostique
4.
ERJ Open Res ; 9(2)2023 Mar.
Article de Anglais | MEDLINE | ID: mdl-37020837

RÉSUMÉ

The NOVEL observational longiTudinal studY (NOVELTY; ClinicalTrials.gov identifier NCT02760329) is a global, prospective, observational study of ∼12 000 patients with a diagnosis of asthma and/or COPD. Here, we describe the design of the Advanced Diagnostic Profiling (ADPro) substudy of NOVELTY being conducted in a subset of ∼180 patients recruited from two primary care sites in York, UK. ADPro is employing a combination of novel functional imaging and physiological and metabolic modalities to explore structural and functional changes in the lungs, and their association with different phenotypes and endotypes. Patients participating in the ADPro substudy will attend two visits at the University of Sheffield, UK, 12±2 months apart, at which they will undergo imaging and physiological lung function testing. The primary end-points are the distributions of whole lung functional and morphological measurements assessed with xenon-129 magnetic resonance imaging, including ventilation, gas transfer and airway microstructural indices. Physiological assessments of pulmonary function include spirometry, bronchodilator reversibility, static lung volumes via body plethysmography, transfer factor of the lung for carbon monoxide, multiple-breath nitrogen washout and airway oscillometry. Fractional exhaled nitric oxide will be measured as a marker of type-2 airways inflammation. Regional and global assessment of lung function using these techniques will enable more precise phenotyping of patients with physician-assigned asthma and/or COPD. These techniques will be assessed for their sensitivity to markers of early disease progression.

5.
Chest ; 164(3): 700-716, 2023 09.
Article de Anglais | MEDLINE | ID: mdl-36965765

RÉSUMÉ

BACKGROUND: Microvascular abnormalities and impaired gas transfer have been observed in patients with COVID-19. The progression of pulmonary changes in these patients remains unclear. RESEARCH QUESTION: Do patients hospitalized with COVID-19 without evidence of architectural distortion on structural imaging exhibit longitudinal improvements in lung function measured by using 1H and 129Xe MRI between 6 and 52 weeks following hospitalization? STUDY DESIGN AND METHODS: Patients who were hospitalized with COVID-19 pneumonia underwent a pulmonary 1H and 129Xe MRI protocol at 6, 12, 25, and 51 weeks following hospital admission in a prospective cohort study between November 2020 and February 2022. The imaging protocol was as follows: 1H ultra-short echo time, contrast-enhanced lung perfusion, 129Xe ventilation, 129Xe diffusion-weighted, and 129Xe spectroscopic imaging of gas exchange. RESULTS: Nine patients were recruited (age 57 ± 14 [median ± interquartile range] years; six of nine patients were male). Patients underwent MRI at 6 (n = 9), 12 (n = 9), 25 (n = 6), and 51 (n = 8) weeks following hospital admission. Patients with signs of interstitial lung damage were excluded. At 6 weeks, patients exhibited impaired 129Xe gas transfer (RBC to membrane fraction), but lung microstructure was not increased (apparent diffusion coefficient and mean acinar airway dimensions). Minor ventilation abnormalities present in four patients were largely resolved in the 6- to 25-week period. At 12 weeks, all patients with lung perfusion data (n = 6) showed an increase in both pulmonary blood volume and flow compared with 6 weeks, although this was not statistically significant. At 12 weeks, significant improvements in 129Xe gas transfer were observed compared with 6-week examinations; however, 129Xe gas transfer remained abnormally low at weeks 12, 25, and 51. INTERPRETATION: 129Xe gas transfer was impaired up to 1 year following hospitalization in patients who were hospitalized with COVID-19 pneumonia, without evidence of architectural distortion on structural imaging, whereas lung ventilation was normal at 52 weeks.


Sujet(s)
COVID-19 , Isotopes du xénon , Humains , Mâle , Adulte , Adulte d'âge moyen , Sujet âgé , Femelle , Études prospectives , Imagerie par résonance magnétique/méthodes , Poumon/imagerie diagnostique
6.
J Magn Reson Imaging ; 58(4): 1030-1044, 2023 10.
Article de Anglais | MEDLINE | ID: mdl-36799341

RÉSUMÉ

BACKGROUND: Recently, deep learning via convolutional neural networks (CNNs) has largely superseded conventional methods for proton (1 H)-MRI lung segmentation. However, previous deep learning studies have utilized single-center data and limited acquisition parameters. PURPOSE: Develop a generalizable CNN for lung segmentation in 1 H-MRI, robust to pathology, acquisition protocol, vendor, and center. STUDY TYPE: Retrospective. POPULATION: A total of 809 1 H-MRI scans from 258 participants with various pulmonary pathologies (median age (range): 57 (6-85); 42% females) and 31 healthy participants (median age (range): 34 (23-76); 34% females) that were split into training (593 scans (74%); 157 participants (55%)), testing (50 scans (6%); 50 participants (17%)) and external validation (164 scans (20%); 82 participants (28%)) sets. FIELD STRENGTH/SEQUENCE: 1.5-T and 3-T/3D spoiled-gradient recalled and ultrashort echo-time 1 H-MRI. ASSESSMENT: 2D and 3D CNNs, trained on single-center, multi-sequence data, and the conventional spatial fuzzy c-means (SFCM) method were compared to manually delineated expert segmentations. Each method was validated on external data originating from several centers. Dice similarity coefficient (DSC), average boundary Hausdorff distance (Average HD), and relative error (XOR) metrics to assess segmentation performance. STATISTICAL TESTS: Kruskal-Wallis tests assessed significances of differences between acquisitions in the testing set. Friedman tests with post hoc multiple comparisons assessed differences between the 2D CNN, 3D CNN, and SFCM. Bland-Altman analyses assessed agreement with manually derived lung volumes. A P value of <0.05 was considered statistically significant. RESULTS: The 3D CNN significantly outperformed its 2D analog and SFCM, yielding a median (range) DSC of 0.961 (0.880-0.987), Average HD of 1.63 mm (0.65-5.45) and XOR of 0.079 (0.025-0.240) on the testing set and a DSC of 0.973 (0.866-0.987), Average HD of 1.11 mm (0.47-8.13) and XOR of 0.054 (0.026-0.255) on external validation data. DATA CONCLUSION: The 3D CNN generated accurate 1 H-MRI lung segmentations on a heterogenous dataset, demonstrating robustness to disease pathology, sequence, vendor, and center. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: Stage 1.


Sujet(s)
Apprentissage profond , Femelle , Humains , Mâle , Protons , Études rétrospectives , Imagerie par résonance magnétique/méthodes , Poumon/imagerie diagnostique , Traitement d'image par ordinateur/méthodes
7.
J Magn Reson Imaging ; 57(6): 1878-1890, 2023 06.
Article de Anglais | MEDLINE | ID: mdl-36373828

RÉSUMÉ

BACKGROUND: Hyperpolarized gas MRI can quantify regional lung ventilation via biomarkers, including the ventilation defect percentage (VDP). VDP is computed from segmentations derived from spatially co-registered functional hyperpolarized gas and structural proton (1 H)-MRI. Although acquired at similar lung inflation levels, they are frequently misaligned, requiring a lung cavity estimation (LCE). Recently, single-channel, mono-modal deep learning (DL)-based methods have shown promise for pulmonary image segmentation problems. Multichannel, multimodal approaches may outperform single-channel alternatives. PURPOSE: We hypothesized that a DL-based dual-channel approach, leveraging both 1 H-MRI and Xenon-129-MRI (129 Xe-MRI), can generate LCEs more accurately than single-channel alternatives. STUDY TYPE: Retrospective. POPULATION: A total of 480 corresponding 1 H-MRI and 129 Xe-MRI scans from 26 healthy participants (median age [range]: 11 [8-71]; 50% females) and 289 patients with pulmonary pathologies (median age [range]: 47 [6-83]; 51% females) were split into training (422 scans [88%]; 257 participants [82%]) and testing (58 scans [12%]; 58 participants [18%]) sets. FIELD STRENGTH/SEQUENCE: 1.5-T, three-dimensional (3D) spoiled gradient-recalled 1 H-MRI and 3D steady-state free-precession 129 Xe-MRI. ASSESSMENT: We developed a multimodal DL approach, integrating 129 Xe-MRI and 1 H-MRI, in a dual-channel convolutional neural network. We compared this approach to single-channel alternatives using manually edited LCEs as a benchmark. We further assessed a fully automatic DL-based framework to calculate VDPs and compared it to manually generated VDPs. STATISTICAL TESTS: Friedman tests with post hoc Bonferroni correction for multiple comparisons compared single-channel and dual-channel DL approaches using Dice similarity coefficient (DSC), average boundary Hausdorff distance (average HD), and relative error (XOR) metrics. Bland-Altman analysis and paired t-tests compared manual and DL-generated VDPs. A P value < 0.05 was considered statistically significant. RESULTS: The dual-channel approach significantly outperformed single-channel approaches, achieving a median (range) DSC, average HD, and XOR of 0.967 (0.867-0.978), 1.68 mm (37.0-0.778), and 0.066 (0.246-0.045), respectively. DL-generated VDPs were statistically indistinguishable from manually generated VDPs (P = 0.710). DATA CONCLUSION: Our dual-channel approach generated LCEs, which could be integrated with ventilated lung segmentations to produce biomarkers such as the VDP without manual intervention. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: Stage 1.


Sujet(s)
Apprentissage profond , Protons , Femelle , Humains , Mâle , Études rétrospectives , Poumon/imagerie diagnostique , Imagerie par résonance magnétique/méthodes , Marqueurs biologiques
8.
J Magn Reson Imaging ; 57(6): 1908-1921, 2023 06.
Article de Anglais | MEDLINE | ID: mdl-36218321

RÉSUMÉ

BACKGROUND: Free-breathing 1 H ventilation MRI shows promise but only single-center validation has yet been performed against methods which directly image lung ventilation in patients with cystic fibrosis (CF). PURPOSE: To investigate the relationship between 129 Xe and 1 H ventilation images using data acquired at two centers. STUDY TYPE: Sequence comparison. POPULATION: Center 1; 24 patients with CF (12 female) aged 9-47 years. Center 2; 7 patients with CF (6 female) aged 13-18 years, and 6 healthy controls (6 female) aged 21-31 years. Data were acquired in different patients at each center. FIELD STRENGTH/SEQUENCE: 1.5 T, 3D steady-state free precession and 2D spoiled gradient echo. ASSESSMENT: Subjects were scanned with 129 Xe ventilation and 1 H free-breathing MRI and performed pulmonary function tests. Ventilation defect percent (VDP) was calculated using linear binning and images were visually assessed by H.M., L.J.S., and G.J.C. (10, 5, and 8 years' experience). STATISTICAL TESTS: Correlations and linear regression analyses were performed between 129 Xe VDP, 1 H VDP, FEV1 , and LCI. Bland-Altman analysis of 129 Xe VDP and 1 H VDP was carried out. Differences in metrics were assessed using one-way ANOVA or Kruskal-Wallis tests. RESULTS: 129 Xe VDP and 1 H VDP correlated strongly with; each other (r = 0.84), FEV1 z-score (129 Xe VDP r = -0.83, 1 H VDP r = -0.80), and LCI (129 Xe VDP r = 0.91, 1 H VDP r = 0.82). Bland-Altman analysis of 129 Xe VDP and 1 H VDP from both centers had a bias of 0.07% and limits of agreement of -16.1% and 16.2%. Linear regression relationships of VDP with FEV1 were not significantly different between 129 Xe and 1 H VDP (P = 0.08), while 129 Xe VDP had a stronger relationship with LCI than 1 H VDP. DATA CONCLUSION: 1 H ventilation MRI shows large-scale agreement with 129 Xe ventilation MRI in CF patients with established lung disease but may be less sensitive to subtle ventilation changes in patients with early-stage lung disease. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Sujet(s)
Mucoviscidose , Humains , Femelle , Mucoviscidose/imagerie diagnostique , Ventilation pulmonaire , Poumon/imagerie diagnostique , Respiration , Imagerie par résonance magnétique/méthodes , Isotopes du xénon
9.
Am J Respir Crit Care Med ; 207(1): 89-100, 2023 01 01.
Article de Anglais | MEDLINE | ID: mdl-35972833

RÉSUMÉ

Rationale: Preterm birth is associated with low lung function in childhood, but little is known about the lung microstructure in childhood. Objectives: We assessed the differential associations between the historical diagnosis of bronchopulmonary dysplasia (BPD) and current lung function phenotypes on lung ventilation and microstructure in preterm-born children using hyperpolarized 129Xe ventilation and diffusion-weighted magnetic resonance imaging (MRI) and multiple-breath washout (MBW). Methods: Data were available from 63 children (aged 9-13 yr), including 44 born preterm (⩽34 weeks' gestation) and 19 term-born control subjects (⩾37 weeks' gestation). Preterm-born children were classified, using spirometry, as prematurity-associated obstructive lung disease (POLD; FEV1 < lower limit of normal [LLN] and FEV1/FVC < LLN), prematurity-associated preserved ratio of impaired spirometry (FEV1 < LLN and FEV1/FVC ⩾ LLN), preterm-(FEV1 ⩾ LLN) and term-born control subjects, and those with and without BPD. Ventilation heterogeneity metrics were derived from 129Xe ventilation MRI and SF6 MBW. Alveolar microstructural dimensions were derived from 129Xe diffusion-weighted MRI. Measurements and Main Results: 129Xe ventilation defect percentage and ventilation heterogeneity index were significantly increased in preterm-born children with POLD. In contrast, mean 129Xe apparent diffusion coefficient, 129Xe apparent diffusion coefficient interquartile range, and 129Xe mean alveolar dimension interquartile range were significantly increased in preterm-born children with BPD, suggesting changes of alveolar dimensions. MBW metrics were all significantly increased in the POLD group compared with preterm- and term-born control subjects. Linear regression confirmed the differential effects of obstructive disease on ventilation defects and BPD on lung microstructure. Conclusion: We show that ventilation abnormalities are associated with POLD, and BPD in infancy is associated with abnormal lung microstructure.


Sujet(s)
Dysplasie bronchopulmonaire , Naissance prématurée , Nouveau-né , Humains , Femelle , Poumon/imagerie diagnostique , Tests de la fonction respiratoire , Dysplasie bronchopulmonaire/imagerie diagnostique , Imagerie par résonance magnétique/méthodes
10.
Sci Rep ; 12(1): 10566, 2022 06 22.
Article de Anglais | MEDLINE | ID: mdl-35732795

RÉSUMÉ

Respiratory diseases are leading causes of mortality and morbidity worldwide. Pulmonary imaging is an essential component of the diagnosis, treatment planning, monitoring, and treatment assessment of respiratory diseases. Insights into numerous pulmonary pathologies can be gleaned from functional lung MRI techniques. These include hyperpolarized gas ventilation MRI, which enables visualization and quantification of regional lung ventilation with high spatial resolution. Segmentation of the ventilated lung is required to calculate clinically relevant biomarkers. Recent research in deep learning (DL) has shown promising results for numerous segmentation problems. Here, we evaluate several 3D convolutional neural networks to segment ventilated lung regions on hyperpolarized gas MRI scans. The dataset consists of 759 helium-3 (3He) or xenon-129 (129Xe) volumetric scans and corresponding expert segmentations from 341 healthy subjects and patients with a wide range of pathologies. We evaluated segmentation performance for several DL experimental methods via overlap, distance and error metrics and compared them to conventional segmentation methods, namely, spatial fuzzy c-means (SFCM) and K-means clustering. We observed that training on combined 3He and 129Xe MRI scans using a 3D nn-UNet outperformed other DL methods, achieving a mean ± SD Dice coefficient of 0.963 ± 0.018, average boundary Hausdorff distance of 1.505 ± 0.969 mm, Hausdorff 95th percentile of 5.754 ± 6.621 mm and relative error of 0.075 ± 0.039. Moreover, limited differences in performance were observed between 129Xe and 3He scans in the testing set. Combined training on 129Xe and 3He yielded statistically significant improvements over the conventional methods (p < 0.0001). In addition, we observed very strong correlation and agreement between DL and expert segmentations, with Pearson correlation of 0.99 (p < 0.0001) and Bland-Altman bias of - 0.8%. The DL approach evaluated provides accurate, robust and rapid segmentations of ventilated lung regions and successfully excludes non-lung regions such as the airways and artefacts. This approach is expected to eliminate the need for, or significantly reduce, subsequent time-consuming manual editing.


Sujet(s)
Apprentissage profond , Humains , Poumon/imagerie diagnostique , Mesure des volumes pulmonaires , Imagerie par résonance magnétique/méthodes , Mâle
11.
Pulm Circ ; 12(2): e12054, 2022 Apr.
Article de Anglais | MEDLINE | ID: mdl-35514781

RÉSUMÉ

For sensitive diagnosis and monitoring of pulmonary disease, ionizing radiation-free imaging methods are of great importance. A noncontrast and free-breathing proton magnetic resonance imaging (MRI) technique for assessment of pulmonary perfusion is phase-resolved functional lung (PREFUL) MRI. Since there is no validation of PREFUL MRI across different centers and scanners, the purpose of this study was to compare perfusion-weighted PREFUL MRI with the well-established dynamic contrast-enhanced (DCE) MRI across two centers on scanners from two different vendors. Sixteen patients with cystic fibrosis (CF) (Center 1: 10 patients; Center 2: 6 patients) underwent PREFUL and DCE MRI at 1.5T in the same imaging session. Normalized perfusion-weighted values and perfusion defect percentage (QDP) values were calculated for the whole lung and three central slices (dorsal, central, ventral of the carina). Obtained parameters were compared using Pearson correlation, Spearman correlation, Bland-Altman analysis, Wilcoxon signed-rank test, and Wilcoxon rank-sum test. Moderate-to-strong correlations between normalized perfusion-weighted PREFUL and DCE values were found (posterior slice: r = 0.69, p < 0.01). Spatial overlap of PREFUL and DCE QDP maps showed an agreement of 79.4% for the whole lung. Further, spatial overlap values of Center 1 were not significantly different to those of Center 2 for the three central slices (p > 0.07). The feasibility of PREFUL MRI across two different centers and two different vendors was shown in patients with CF and obtained results were in agreement with DCE MRI.

12.
Respir Physiol Neurobiol ; 302: 103919, 2022 08.
Article de Anglais | MEDLINE | ID: mdl-35562095

RÉSUMÉ

BACKGROUND: Indices of ventilation heterogeneity (VH) from multiple breath washout (MBW) have been shown to correlate well with VH indices derived from hyperpolarised gas ventilation MRI. Here we report the prediction of ventilation distributions from MBW data using a mathematical model, and the comparison of these predictions with imaging data. METHODS: We developed computer simulations of the ventilation distribution in the lungs to model MBW measurement with 3 parameters: σV, determining the extent of VH; V0, the lung volume; and VD, the dead-space volume. These were inferred for each individual from supine MBW data recorded from 25 patients with cystic fibrosis (CF) using approximate Bayesian computation. The fitted models were used to predict the distribution of gas imaged by 3He ventilation MRI measurements collected from the same visit. RESULTS: The MRI indices measured (I1/3, the fraction of pixels below one-third of the mean intensity and ICV, the coefficient of variation of pixel intensity) correlated strongly with those predicted by the MBW model fits (r=0.93,0.88 respectively). There was also good agreement between predicted and measured MRI indices (mean bias ± limits of agreement: I1/3:-0.003±0.118 and ICV:-0.004±0.298). Fitted model parameters were robust to truncation of MBW data. CONCLUSION: We have shown that the ventilation distribution in the lung can be inferred from an MBW signal, and verified this using ventilation MRI. The Bayesian method employed extracts this information with fewer breath cycles than required for LCI, reducing acquisition time required, and gives uncertainty bounds, which are important for clinical decision making.


Sujet(s)
Mucoviscidose , Théorème de Bayes , Tests d'analyse de l'haleine/méthodes , Mucoviscidose/imagerie diagnostique , Humains , Poumon/imagerie diagnostique , Imagerie par résonance magnétique , Mâle , Tests de la fonction respiratoire/méthodes
13.
Br J Radiol ; 95(1132): 20210207, 2022 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-34106792

RÉSUMÉ

The use of pulmonary MRI in a clinical setting has historically been limited. Whilst CT remains the gold-standard for structural lung imaging in many clinical indications, technical developments in ultrashort and zero echo time MRI techniques are beginning to help realise non-ionising structural imaging in certain lung disorders. In this invited review, we discuss a complementary technique - hyperpolarised (HP) gas MRI with inhaled 3He and 129Xe - a method for functional and microstructural imaging of the lung that has great potential as a clinical tool for early detection and improved understanding of pathophysiology in many lung diseases. HP gas MRI now has the potential to make an impact on clinical management by enabling safe, sensitive monitoring of disease progression and response to therapy. With reference to the significant evidence base gathered over the last two decades, we review HP gas MRI studies in patients with a range of pulmonary disorders, including COPD/emphysema, asthma, cystic fibrosis, and interstitial lung disease. We provide several examples of our experience in Sheffield of using these techniques in a diagnostic clinical setting in challenging adult and paediatric lung diseases.


Sujet(s)
Asthme , Mucoviscidose , Enfant , Gaz , Humains , Poumon/imagerie diagnostique , Imagerie par résonance magnétique/méthodes , Mâle
14.
ERJ Open Res ; 7(3)2021 Jul.
Article de Anglais | MEDLINE | ID: mdl-34589542

RÉSUMÉ

BACKGROUND: Hyperpolarised gas magnetic resonance imaging (MRI) can be used to assess ventilation patterns. Previous studies have shown the image-derived metric of ventilation defect per cent (VDP) to correlate with forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) and FEV1 in asthma. OBJECTIVES: The aim of this study was to explore the utility of hyperpolarised xenon-129 (129Xe) ventilation MRI in clinical care and examine its relationship with spirometry and other clinical metrics in people seen in a severe asthma service. METHODS: 26 people referred from a severe asthma clinic for MRI scanning were assessed by contemporaneous 129Xe MRI and spirometry. A subgroup of 18 patients also underwent reversibility testing with spirometry and MRI. Quantitative MRI measures of ventilation were calculated, VDP and the ventilation heterogeneity index (VHI), and compared to spirometry, Asthma Control Questionnaire 7 (ACQ7) and blood eosinophil count. Images were reviewed by a multidisciplinary team. RESULTS: VDP and VHI correlated with FEV1, FEV1/FVC and forced expiratory flow between 25% and 75% of FVC but not with ACQ7 or blood eosinophil count. Discordance of MRI imaging and symptoms and/or pulmonary function tests also occurred, prompting diagnostic re-evaluation in some cases. CONCLUSION: Hyperpolarised gas MRI provides a complementary method of assessment in people with difficult to manage asthma in a clinical setting. When used as a tool supporting clinical care in a severe asthma service, occurrences of discordance between symptoms, spirometry and MRI scanning indicate how MRI scanning may add to a management pathway.

15.
J Cyst Fibros ; 20(4): 625-631, 2021 07.
Article de Anglais | MEDLINE | ID: mdl-32814651

RÉSUMÉ

BACKGROUND: The importance of exercise in the management of people with CF is well recognised, yet the effect of exercise on lung function is not well understood. FEV1 is insensitive to the detection of small changes in lung function. Ventilation MRI and LCI are both more sensitive to mild lung disease than FEV1 and may be better suited to assess the effects of exercise. Here we assessed the short-term effects of maximal exercise on the distribution of ventilation using ventilation MRI and LCI. METHODS: Patients with CF and a range of lung disease were assessed. Baseline LCI and ventilation MRI was followed by a maximal cardio-pulmonary exercise test (CPET). Repeated ventilation MRI was performed within 30 minutes of exercise termination, followed by LCI and finally by FEV1. RESULTS: 13 patients were recruited and completed all assessments. Mean (SD) age was 25 (10) years and mean (SD) FEV1 z-score was -1.8 (1.7). Mean LCI at baseline was 8.2, mean ventilation defect percentage on MRI (VDP) was 7.3%. All patients performed maximal CPET. Post-exercise, there was a visible change in lung ventilation in 85% of patients, including two patients with increased ventilation heterogeneity post-CPET who had normal FEV1. VDP and LCI were significantly reduced post-exercise (p < 0.05) and 45% of patients had a significant change in VDP. CONCLUSIONS: Acute maximal exercise directly affects the distribution of ventilation on ventilation MRI in patients with CF. This suggests that exercise is beneficial in CF and that ventilation MRI is suitable to assess airway clearance efficacy.


Sujet(s)
Mucoviscidose/physiopathologie , Mucoviscidose/thérapie , Traitement par les exercices physiques , Poumon/physiopathologie , Imagerie par résonance magnétique , Adolescent , Adulte , Enfant , Mucoviscidose/imagerie diagnostique , Femelle , Humains , Études longitudinales , Mâle , Ventilation pulmonaire , Tests de la fonction respiratoire , Jeune adulte
16.
Eur Respir J ; 2020 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-32631840

RÉSUMÉ

INTRODUCTION: 129Xe ventilation MRI is sensitive to detect early CF lung disease and response to treatment. 129Xe-MRI could play a significant role in clinical trials and patient management. Here we present data on the repeatability of imaging measurements and their sensitivity to longitudinal change. METHODS: 29 children and adults with CF and a range of disease severity were assessed twice, a median [IQR] of 16.0 [14.4,19.5] months apart. Patients performed 129Xe-MRI, lung clearance index (LCI), body plethysmography and spirometry at both visits. Eleven patients repeated 129Xe-MRI in the same session to assess the within-visit repeatability. The ventilation defect percentage (VDP) was the primary metric calculated from 129Xe-MRI. RESULTS: At baseline, mean (sd) age=23.0 (11.1) years and FEV1 z-score=-2.2 (2.0). Median [IQR] VDP=9.5 [3.4,31.6]%, LCI=9.0 [7.7,13.7]. Within-visit and inter-visit repeatability of VDP was high. At 16 months there was no single trend of 129Xe-MRI disease progression. Visible 129Xe-MRI ventilation changes were common, which reflected changes in VDP. Based on the within-visit repeatability, a significant short-term change in VDP is >±1.6%. For longer-term follow up, changes in VDP of up to ±7.7% can be expected, or ±4.1% for patients with normal FEV1. No patient had a significant change in FEV1, however 59% had change in VDP >±1.6%. In patients with normal FEV1, there were significant changes in ventilation and in VDP. CONCLUSIONS: 129Xe-MRI is a highly effective method for assessing longitudinal lung disease in patients with CF. VDP has great potential as a sensitive clinical outcome measure of lung function and endpoint for clinical trials.

17.
Thorax ; 74(5): 500-502, 2019 05.
Article de Anglais | MEDLINE | ID: mdl-30389827

RÉSUMÉ

Prognosticating idiopathic pulmonary fibrosis (IPF) is challenging, in part due to a lack of sensitive biomarkers. A recent article in Thorax described how hyperpolarised xenon magnetic resonance spectroscopy may quantify regional gas exchange in IPF lungs. In a population of patients with IPF, we find that the xenon signal from red blood cells diminishes relative to the tissue/plasma signal over a 12-month time period, even when the diffusion factor for carbon monoxide is static over the same time period. We conclude that hyperpolarised 129Xe MR spectroscopy may be sensitive to short-term changes in interstitial gas diffusion in IPF.


Sujet(s)
Fibrose pulmonaire idiopathique/métabolisme , Poumon/métabolisme , Capacité de diffusion pulmonaire/méthodes , Échanges gazeux pulmonaires/physiologie , Isotopes du xénon/analyse , Sujet âgé , Femelle , Humains , Fibrose pulmonaire idiopathique/diagnostic , Fibrose pulmonaire idiopathique/physiopathologie , Poumon/physiopathologie , Spectroscopie par résonance magnétique , Mâle
18.
Eur Respir J ; 52(5)2018 11.
Article de Anglais | MEDLINE | ID: mdl-30361245

RÉSUMÉ

Hyperpolarised helium-3 (3He) ventilation magnetic resonance imaging (MRI) and multiple-breath washout (MBW) are sensitive methods for detecting lung disease in cystic fibrosis (CF). We aimed to explore their relationship across a broad range of CF disease severity and patient age, as well as assess the effect of inhaled lung volume on ventilation distribution.32 children and adults with CF underwent MBW and 3He-MRI at a lung volume of end-inspiratory tidal volume (EIV T). In addition, 28 patients performed 3He-MRI at total lung capacity. 3He-MRI scans were quantitatively analysed for ventilation defect percentage (VDP), ventilation heterogeneity index (VHI) and the number and size of individual contiguous ventilation defects. From MBW, the lung clearance index, convection-dependent ventilation heterogeneity (Scond) and convection-diffusion-dependent ventilation heterogeneity (Sacin) were calculated.VDP and VHI at EIV T strongly correlated with lung clearance index (r=0.89 and r=0.88, respectively), Sacin (r=0.84 and r=0.82, respectively) and forced expiratory volume in 1 s (FEV1) (r=-0.79 and r=-0.78, respectively). Two distinct 3He-MRI patterns were highlighted: patients with abnormal FEV1 had significantly (p<0.001) larger, but fewer, contiguous defects than those with normal FEV1, who tended to have numerous small volume defects. These two MRI patterns were delineated by a VDP of ∼10%. At total lung capacity, when compared to EIV T, VDP and VHI reduced in all subjects (p<0.001), demonstrating improved ventilation distribution and regions of volume-reversible and nonreversible ventilation abnormalities.


Sujet(s)
Mucoviscidose/physiopathologie , Poumon/physiopathologie , Adolescent , Adulte , Enfant , Mucoviscidose/diagnostic , Femelle , Volume expiratoire maximal par seconde , Capacité résiduelle fonctionnelle , Humains , Imagerie par résonance magnétique , Mâle , Tests de la fonction respiratoire/méthodes , Volume courant , Jeune adulte
20.
PLoS One ; 12(11): e0188275, 2017.
Article de Anglais | MEDLINE | ID: mdl-29176899

RÉSUMÉ

INTRODUCTION: Lung Clearance Index (LCI) is recognised as an early marker of cystic fibrosis (CF) lung disease. The effect of posture on LCI however is important when considering longitudinal measurements from infancy and when comparing LCI to imaging studies. METHODS: 35 children with CF and 28 healthy controls (HC) were assessed. Multiple breath washout (MBW) was performed both sitting and supine in triplicate and analysed for LCI, Scond, Sacin, and lung volumes. These values were also corrected for the Fowler dead-space to create 'alveolar' indices. RESULTS: From sitting to supine there was a significant increase in LCI and a significant decrease in FRC for both CF and HC (p<0.01). LCI, when adjusted to estimate 'alveolar' LCI (LCIalv), increased the magnitude of change with posture for both LCIalv and FRCalv in both groups, with a greater effect of change in lung volume in HC compared with children with CF. The % change in LCIalv for all subjects correlated significantly with lung volume % changes, most notably tidal volume/functional residual capacity (Vtalv/FRCalv (r = 0.54,p<0.001)). CONCLUSION: There is a significant increase in LCI from sitting to supine, which we believe to be in part due to changes in lung volume and also increasing ventilation heterogeneity related to posture. This may have implications in longitudinal measurements from infancy to older childhood and for studies comparing supine imaging methods to LCI.


Sujet(s)
Mucoviscidose/anatomopathologie , Mucoviscidose/physiopathologie , Poumon/anatomopathologie , Poumon/physiopathologie , Ventilation pulmonaire , Décubitus dorsal , Études cas-témoins , Enfant , Femelle , Capacité résiduelle fonctionnelle , Humains , Mâle , Taille d'organe , Alvéoles pulmonaires/anatomopathologie , Alvéoles pulmonaires/physiopathologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...