Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 15 de 15
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Development ; 150(23)2023 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-38032088

RÉSUMÉ

Heart development is a complex process that requires asymmetric positioning of the heart, cardiac growth and valve morphogenesis. The mechanisms controlling heart morphogenesis and valve formation are not fully understood. The pro-convertase FurinA functions in heart development across vertebrates. How FurinA activity is regulated during heart development is unknown. Through computational analysis of the zebrafish transcriptome, we identified an RNA motif in a variant FurinA transcript harbouring a long 3' untranslated region (3'UTR). The alternative 3'UTR furina isoform is expressed prior to organ positioning. Somatic deletions in the furina 3'UTR lead to embryonic left-right patterning defects. Reporter localisation and RNA-binding assays show that the furina 3'UTR forms complexes with the conserved RNA-binding translational repressor, Ybx1. Conditional ybx1 mutant embryos show premature and increased Furin reporter expression, abnormal cardiac morphogenesis and looping defects. Mutant ybx1 hearts have an expanded atrioventricular canal, abnormal sino-atrial valves and retrograde blood flow from the ventricle to the atrium. This is similar to observations in humans with heart valve regurgitation. Thus, the furina 3'UTR element/Ybx1 regulon is important for translational repression of FurinA and regulation of heart development.


Sujet(s)
Régulon , Danio zébré , Animaux , Humains , Régions 3' non traduites , Régulon/génétique , Morphogenèse/génétique , Valves cardiaques , Protéines de poisson-zèbre/génétique , Protéines de poisson-zèbre/métabolisme , Proprotein convertases/génétique , Proprotein convertases/métabolisme
2.
Front Cell Dev Biol ; 10: 864522, 2022.
Article de Anglais | MEDLINE | ID: mdl-35676934

RÉSUMÉ

Mechanical forces are now recognized as key cellular effectors that together with genetic and cellular signals physically shape and pattern tissues and organs during development. Increasing efforts are aimed toward understanding the less explored role of mechanical forces in controlling cell fate decisions in embryonic development. Here we discuss recent examples of how differential forces feedback into cell fate specification and tissue patterning. In particular, we focus on the role of actomyosin-contractile force generation and transduction in affecting tissue morphogenesis and cell fate regulation in the embryo.

3.
Nat Commun ; 12(1): 6094, 2021 10 19.
Article de Anglais | MEDLINE | ID: mdl-34667153

RÉSUMÉ

Zygotic genome activation (ZGA) initiates regionalized transcription underlying distinct cellular identities. ZGA is dependent upon dynamic chromatin architecture sculpted by conserved DNA-binding proteins. However, the direct mechanistic link between the onset of ZGA and the tissue-specific transcription remains unclear. Here, we have addressed the involvement of chromatin organizer Satb2 in orchestrating both processes during zebrafish embryogenesis. Integrative analysis of transcriptome, genome-wide occupancy and chromatin accessibility reveals contrasting molecular activities of maternally deposited and zygotically synthesized Satb2. Maternal Satb2 prevents premature transcription of zygotic genes by influencing the interplay between the pluripotency factors. By contrast, zygotic Satb2 activates transcription of the same group of genes during neural crest development and organogenesis. Thus, our comparative analysis of maternal versus zygotic function of Satb2 underscores how these antithetical activities are temporally coordinated and functionally implemented highlighting the evolutionary implications of the biphasic and bimodal regulation of landmark developmental transitions by a single determinant.


Sujet(s)
Protéines de liaison aux séquences d'ADN MAR/métabolisme , Facteurs de transcription/métabolisme , Vertébrés/embryologie , Protéines de poisson-zèbre/métabolisme , Danio zébré/embryologie , Danio zébré/métabolisme , Animaux , Chromatine/génétique , Chromatine/métabolisme , Développement embryonnaire , Femelle , Régulation de l'expression des gènes au cours du développement , Mâle , Protéines de liaison aux séquences d'ADN MAR/génétique , Facteurs de transcription/génétique , Transcriptome , Vertébrés/génétique , Vertébrés/métabolisme , Danio zébré/génétique , Protéines de poisson-zèbre/génétique , Zygote/métabolisme
4.
Semin Cell Dev Biol ; 120: 53-65, 2021 12.
Article de Anglais | MEDLINE | ID: mdl-34238674

RÉSUMÉ

A universal principle of all living cells is the ability to sense and respond to mechanical stimuli which is essential for many biological processes. Recent efforts have identified critical mechanosensitive molecules and response pathways involved in mechanotransduction during development and tissue homeostasis. Tissue-wide force transmission and local force sensing need to be spatiotemporally coordinated to precisely regulate essential processes during development such as tissue morphogenesis, patterning, cell migration and organogenesis. Understanding how cells identify and interpret extrinsic forces and integrate a specific response on cell and tissue level remains a major challenge. In this review we consider important cellular and physical factors in control of cell-cell mechanotransduction and discuss their significance for cell and developmental processes. We further highlight mechanosensitive macromolecules that are known to respond to external forces and present examples of how force responses can be integrated into cell and developmental programs.


Sujet(s)
Cadhérines/métabolisme , Adhérence cellulaire/physiologie , Mécanotransduction cellulaire/physiologie , Humains , Transduction du signal
6.
Elife ; 82019 01 16.
Article de Anglais | MEDLINE | ID: mdl-30648973

RÉSUMÉ

Non-canonical Wnt signaling plays a central role for coordinated cell polarization and directed migration in metazoan development. While spatiotemporally restricted activation of non-canonical Wnt-signaling drives cell polarization in epithelial tissues, it remains unclear whether such instructive activity is also critical for directed mesenchymal cell migration. Here, we developed a light-activated version of the non-canonical Wnt receptor Frizzled 7 (Fz7) to analyze how restricted activation of non-canonical Wnt signaling affects directed anterior axial mesendoderm (prechordal plate, ppl) cell migration within the zebrafish gastrula. We found that Fz7 signaling is required for ppl cell protrusion formation and migration and that spatiotemporally restricted ectopic activation is capable of redirecting their migration. Finally, we show that uniform activation of Fz7 signaling in ppl cells fully rescues defective directed cell migration in fz7 mutant embryos. Together, our findings reveal that in contrast to the situation in epithelial cells, non-canonical Wnt signaling functions permissively rather than instructively in directed mesenchymal cell migration during gastrulation.


Sujet(s)
Mouvement cellulaire/effets des radiations , Endoderme/cytologie , Lumière , Mésoderme/cytologie , Récepteurs de surface cellulaire/métabolisme , Voie de signalisation Wnt/effets des radiations , Protéines de poisson-zèbre/métabolisme , Animaux , Animal génétiquement modifié , Embryon non mammalien/cytologie , Embryon non mammalien/effets des radiations , Mutation/génétique , Phénotype , Cellules souches/cytologie , Cellules souches/effets des radiations , Danio zébré/embryologie , Danio zébré/génétique
7.
Dev Cell ; 45(3): 331-346.e7, 2018 05 07.
Article de Anglais | MEDLINE | ID: mdl-29738712

RÉSUMÉ

Migrating cells penetrate tissue barriers during development, inflammatory responses, and tumor metastasis. We study if migration in vivo in such three-dimensionally confined environments requires changes in the mechanical properties of the surrounding cells using embryonic Drosophila melanogaster hemocytes, also called macrophages, as a model. We find that macrophage invasion into the germband through transient separation of the apposing ectoderm and mesoderm requires cell deformations and reductions in apical tension in the ectoderm. Interestingly, the genetic pathway governing these mechanical shifts acts downstream of the only known tumor necrosis factor superfamily member in Drosophila, Eiger, and its receptor, Grindelwald. Eiger-Grindelwald signaling reduces levels of active Myosin in the germband ectodermal cortex through the localization of a Crumbs complex component, Patj (Pals-1-associated tight junction protein). We therefore elucidate a distinct molecular pathway that controls tissue tension and demonstrate the importance of such regulation for invasive migration in vivo.


Sujet(s)
Mouvement cellulaire/effets des médicaments et des substances chimiques , Protéines de Drosophila/métabolisme , Drosophila melanogaster/croissance et développement , Embryon non mammalien/cytologie , Hémocytes/cytologie , Macrophages/cytologie , Facteur de nécrose tumorale alpha/pharmacologie , Animaux , Polarité de la cellule/effets des médicaments et des substances chimiques , Cellules cultivées , Protéines de Drosophila/génétique , Drosophila melanogaster/génétique , Drosophila melanogaster/métabolisme , Embryon non mammalien/effets des médicaments et des substances chimiques , Embryon non mammalien/métabolisme , Protéines de l'oeil/génétique , Protéines de l'oeil/métabolisme , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Hémocytes/effets des médicaments et des substances chimiques , Hémocytes/métabolisme , Macrophages/effets des médicaments et des substances chimiques , Macrophages/métabolisme , Protéines membranaires/génétique , Protéines membranaires/métabolisme , Myosines/génétique , Myosines/métabolisme , Transduction du signal
8.
Nat Cell Biol ; 19(4): 306-317, 2017 04.
Article de Anglais | MEDLINE | ID: mdl-28346437

RÉSUMÉ

During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo.


Sujet(s)
Friction , Système nerveux/embryologie , Danio zébré/embryologie , Animaux , Phénomènes biomécaniques , Cadhérines/métabolisme , Communication cellulaire , Mouvement cellulaire , Embryon non mammalien/cytologie , Endoderme/cytologie , Endoderme/embryologie , Gastrulation , Hydrodynamique , Mésoderme/cytologie , Mésoderme/embryologie , Modèles biologiques , Morphogenèse , Mutation/génétique , Plaque neurale/cytologie , Plaque neurale/embryologie , Protéines de poisson-zèbre/métabolisme
9.
Cell ; 160(4): 673-685, 2015 Feb 12.
Article de Anglais | MEDLINE | ID: mdl-25679761

RÉSUMÉ

3D amoeboid cell migration is central to many developmental and disease-related processes such as cancer metastasis. Here, we identify a unique prototypic amoeboid cell migration mode in early zebrafish embryos, termed stable-bleb migration. Stable-bleb cells display an invariant polarized balloon-like shape with exceptional migration speed and persistence. Progenitor cells can be reversibly transformed into stable-bleb cells irrespective of their primary fate and motile characteristics by increasing myosin II activity through biochemical or mechanical stimuli. Using a combination of theory and experiments, we show that, in stable-bleb cells, cortical contractility fluctuations trigger a stochastic switch into amoeboid motility, and a positive feedback between cortical flows and gradients in contractility maintains stable-bleb cell polarization. We further show that rearward cortical flows drive stable-bleb cell migration in various adhesive and non-adhesive environments, unraveling a highly versatile amoeboid migration phenotype.


Sujet(s)
Mouvement cellulaire , Embryon non mammalien/cytologie , Gastrula/cytologie , Cellules souches/cytologie , Danio zébré/embryologie , Animaux , Adhérence cellulaire , Polarité de la cellule
10.
Methods Mol Biol ; 1189: 219-35, 2015.
Article de Anglais | MEDLINE | ID: mdl-25245697

RÉSUMÉ

Mechanically coupled cells can generate forces driving cell and tissue morphogenesis during development. Visualization and measuring of these forces is of major importance to better understand the complexity of the biomechanic processes that shape cells and tissues. Here, we describe how UV laser ablation can be utilized to quantitatively assess mechanical tension in different tissues of the developing zebrafish and in cultures of primary germ layer progenitor cells ex vivo.


Sujet(s)
Embryon non mammalien/cytologie , Embryon non mammalien/physiologie , Thérapie laser/méthodes , Rayons ultraviolets , Danio zébré/embryologie , Actomyosine/métabolisme , Animaux , Phénomènes biomécaniques , Cellules cultivées , Mésoderme/cytologie , Cellules souches/cytologie
11.
PLoS One ; 6(7): e22458, 2011.
Article de Anglais | MEDLINE | ID: mdl-21799860

RÉSUMÉ

The zonula adherens (ZA) of epithelial cells is a site of cell-cell adhesion where cellular forces are exerted and resisted. Increasing evidence indicates that E-cadherin adhesion molecules at the ZA serve to sense force applied on the junctions and coordinate cytoskeletal responses to those forces. Efforts to understand the role that cadherins play in mechanotransduction have been limited by the lack of assays to measure the impact of forces on the ZA. In this study we used 4D imaging of GFP-tagged E-cadherin to analyse the movement of the ZA. Junctions in confluent epithelial monolayers displayed prominent movements oriented orthogonal (perpendicular) to the ZA itself. Two components were identified in these movements: a relatively slow unidirectional (translational) component that could be readily fitted by least-squares regression analysis, upon which were superimposed more rapid oscillatory movements. Myosin IIB was a dominant factor responsible for driving the unilateral translational movements. In contrast, frequency spectrum analysis revealed that depletion of Myosin IIA increased the power of the oscillatory movements. This implies that Myosin IIA may serve to dampen oscillatory movements of the ZA. This extends our recent analysis of Myosin II at the ZA to demonstrate that Myosin IIA and Myosin IIB make distinct contributions to junctional movement at the ZA.


Sujet(s)
Jonctions adhérentes/métabolisme , Cellules épithéliales/cytologie , Mouvement , Myosine non-musculaire de type IIA/métabolisme , Myosine non-musculaire de type IIB/métabolisme , Animaux , Cadhérines/métabolisme , Lignée cellulaire tumorale , Humains , Cinétique , Souris , Imagerie moléculaire
12.
Nat Cell Biol ; 12(7): 696-702, 2010 Jul.
Article de Anglais | MEDLINE | ID: mdl-20543839

RÉSUMÉ

Classic cadherin receptors cooperate with regulators of the actin cytoskeleton to control tissue organization in health and disease. At the apical junctions of epithelial cells, the cadherin ring of the zonula adherens (ZA) couples with a contiguous ring of actin filaments to support morphogenetic processes such as tissue integration and cellular morphology. However, the molecular mechanisms that coordinate adhesion and cytoskeleton at these junctions are poorly understood. Previously we identified non-muscle myosin II as a target of Rho signalling that supports cadherin junctions in mammalian epithelial cells. Myosin II has various cellular functions, which are increasingly attributable to the specific biophysical properties and regulation of its different isoforms. Here we report that myosin II isoforms have distinct and necessary roles at cadherin junctions. Although two of the three mammalian myosin II isoforms are found at the ZA, their localization is regulated by different upstream signalling pathways. Junctional localization of myosin IIA required E-cadherin adhesion, Rho/ROCK and myosin light-chain kinase, whereas junctional myosin IIB depended on Rap1. Further, these myosin II isoforms support E-cadherin junction integrity by different mechanisms. Myosin IIA RNA-mediated interference (RNAi) selectively perturbed the accumulation of E-cadherin in the apical ZA, decreased cadherin homophilic adhesion and disrupted cadherin clustering. In contrast, myosin IIB RNAi decreased filament content, altered dynamics, and increased the lateral movement of the perijunctional actin ring. Myosin IIA and IIB therefore identify two distinct functional modules, with different upstream signals that control junctional localization, and distinct functional effects. We propose that these two isoform-based modules cooperate to coordinate adhesion receptor and F-actin organization to form apical cadherin junctions.


Sujet(s)
Jonctions adhérentes/métabolisme , Myosine non-musculaire de type IIA/métabolisme , Myosine non-musculaire de type IIB/métabolisme , Cadhérines/métabolisme , Lignée cellulaire tumorale , Humains , Modèles biologiques
13.
J Cell Biol ; 189(7): 1075-7, 2010 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-20584914

RÉSUMÉ

Cell-cell adhesions are sites where cells experience and resist tugging forces. It has long been postulated, but not directly tested, that cadherin adhesion molecules may serve in mechanotransduction at cell-cell contacts. In this issue, Le Duc et al. (2010. J. Cell Biol. doi: 10.1083/jcb.201001149) provide direct evidence that E-cadherin participates in a mechanosensing pathway that regulates the actomyosin cytoskeleton to modulate cell stiffness in response to pulling force.


Sujet(s)
Cadhérines/physiologie , Mécanotransduction cellulaire , Phénomènes biomécaniques , Cytosquelette/physiologie
14.
J Mol Histol ; 40(5-6): 395-405, 2009 Oct.
Article de Anglais | MEDLINE | ID: mdl-20157769

RÉSUMÉ

Cell-cell interactions influence epithelial morphogenesis through an interplay between cell adhesion, trafficking and the cytoskeleton. These cellular processes are coordinated, often by cell signals found at cell-cell contacts. One such contact-based signal is the phosphatidylinositol 3'-kinase (PI3-kinase; PI3K) pathway. PI3-kinase is best understood for its role in mitogenic signalling, where it regulates cell survival, proliferation and differentiation. Its precise morphogenetic impacts in epithelia are, in contrast, less well-understood. Using phosphoinositide-specific biosensors we confirmed that E-cadherin-based cell-cell contacts are enriched in PIP(3), the principal product of PI3-kinase. We then used pharmacologic inhibitors to assess the morphogenetic impact of PI3-kinase in MDCK and MCF7 monolayers. We found that inhibiting PI3-kinase caused a reduction in epithelial cell height that was reversible upon removal of the drugs. This was not attributable to changes in E-cadherin expression or homophilic adhesion. Nor were there detectable changes in cell polarity. While Myosin II has been implicated in regulating keratinocyte height, we found no effect of PI3-kinase inhibition on apparent Myosin II activity; nor did direct inhibition of Myosin II alter epithelial height. Instead, in pursuing signalling pathways downstream of PI3-kinase we found that blocking Rac signalling, but not mTOR, reduced epithelial cell height, as did PI3-kinase inhibition. Overall, our findings suggest that PI3-kinase exerts a major morphogenetic impact in simple cultured epithelia through preservation of cell height. This is independent of potential effects on adhesion or polarity, but may occur through PI3-kinase-stimulated Rac signaling.


Sujet(s)
Taille de la cellule , Cellules épithéliales/cytologie , Cellules épithéliales/enzymologie , Phosphatidylinositol 3-kinases/métabolisme , Transduction du signal , Animaux , Cadhérines/métabolisme , Adhérence cellulaire/effets des médicaments et des substances chimiques , Communication cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire , Polarité de la cellule/effets des médicaments et des substances chimiques , Taille de la cellule/effets des médicaments et des substances chimiques , Chiens , Cellules épithéliales/effets des médicaments et des substances chimiques , Humains , Protéines et peptides de signalisation intracellulaire/métabolisme , Myosine de type II/métabolisme , Phosphates phosphatidylinositol/métabolisme , Inhibiteurs des phosphoinositide-3 kinases , Inhibiteurs de protéines kinases/pharmacologie , Protein-Serine-Threonine Kinases/métabolisme , Transport des protéines/effets des médicaments et des substances chimiques , Transduction du signal/effets des médicaments et des substances chimiques , Sérine-thréonine kinases TOR , Protéine G rac1/métabolisme
15.
Mol Cell Biol ; 24(24): 10986-94, 2004 Dec.
Article de Anglais | MEDLINE | ID: mdl-15572699

RÉSUMÉ

Polyomavirus large T antigen transactivates a variety of genes whose products are involved in S phase induction. These genes are regulated by the E2F family of transcription factors, which are under the control of the pocket protein retinoblastoma protein and its relatives p130 and p107. The viral protein causes a dissociation of E2F-pocket protein complexes that results in transactivation of the genes. This reaction requires the N-terminal binding site for pocket proteins and the J domain that binds chaperones. We found earlier that a mutation of the zinc finger located within the C-terminal domain, a region assumed to function mainly in the replication of viral DNA, also interferes with transactivation. Here we show that binding of the histone acetyltransferase coactivator complex CBP/p300-PCAF to the C terminus correlates with the ability of large T antigen to transactivate genes. This interaction results in promoter-specific acetylation of histones. Inactive mutant proteins with changes within the C-terminal domain were nevertheless able to dissociate the E2F pocket protein complexes, indicating that this dissociation is a necessary but insufficient step in the T antigen-induced transactivation of genes. It has to be accompanied by a second step involving the T antigen-mediated recruitment of a histone acetyltransferase complex.


Sujet(s)
Antigènes transformants de polyomavirus/métabolisme , Protéines du cycle cellulaire/génétique , Protéines de liaison à l'ADN/génétique , Régulation de l'expression des gènes viraux , Modèles biologiques , Facteurs de transcription/génétique , Activation de la transcription , Alanine/métabolisme , Séquence d'acides aminés , Substitution d'acide aminé , Animaux , Antigènes transformants de polyomavirus/composition chimique , Antigènes transformants de polyomavirus/génétique , Sites de fixation , Protéines du cycle cellulaire/métabolisme , Lignée cellulaire , Chromatine/métabolisme , ADN/analyse , Protéines de liaison à l'ADN/métabolisme , Facteurs de transcription E2F , Test de retard de migration électrophorétique , Embryon de mammifère/cytologie , Fibroblastes/métabolisme , Gènes rapporteurs , Immunotransfert , Luciferases/métabolisme , Souris , Mutagenèse dirigée , Réaction de polymérisation en chaîne , Tests aux précipitines , Structure tertiaire des protéines , Rats , Cellules Swiss 3T3 , Facteurs de transcription/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE