Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Environ Microbiol ; 24(3): 1012-1034, 2022 03.
Article de Anglais | MEDLINE | ID: mdl-34499795

RÉSUMÉ

Global warming affects the aquatic ecosystems, accelerating pathogenic microorganisms' and toxic microalgae's growth and spread in marine habitats, and in bivalve molluscs. New parasite invasions are directly linked to oceanic warming. Consumption of pathogen-infected molluscs impacts human health at different rates, depending, inter alia, on the bacteria taxa. It is therefore necessary to monitor microbiological and chemical contamination of food. Many global cases of poisoning from bivalve consumption can be traced back to Mediterranean regions. This article aims to examine the marine bivalve's infestation rate within the scope of climate change, as well as to evaluate the risk posed by climate change to bivalve welfare and public health. Biological and climatic data literature review was performed from international scientific sources, Greek authorities and State organizations. Focusing on Greek aquaculture and bivalve fisheries, high-risk index pathogenic parasites and microalgae were observed during summer months, particularly in Thermaikos Gulf. Considering the climate models that predict further temperature increases, it seems that marine organisms will be subjected in the long term to higher temperatures. Due to the positive linkage between temperature and microbial load, the marine areas most affected by this phenomenon are characterized as 'high risk' for consumer health.


Sujet(s)
Bivalvia , Changement climatique , Animaux , Écosystème , Grèce , Humains , Océans et mers
2.
PLoS One ; 14(8): e0219671, 2019.
Article de Anglais | MEDLINE | ID: mdl-31415572

RÉSUMÉ

A 1-D full-life-cycle, Individual-based model (IBM), two-way coupled with a hydrodynamic/biogeochemical model, is demonstrated for anchovy and sardine in the N. Aegean Sea (Eastern Mediterranean). The model is stage-specific and includes a 'Wisconsin' type bioenergetics, a diel vertical migration and a population dynamics module, with the incorporation of known differences in biological attributes between the anchovy and sardine stocks. A new energy allocation/egg production algorithm was developed, allowing for breeding pattern to move along the capital-income breeding continuum. Fish growth was calibrated against available size-at-age data by tuning food consumption (the half saturation coefficients) using a genetic algorithm. After a ten-years spin up, the model reproduced well the magnitude of population biomasses and spawning periods of the two species in the N. Aegean Sea. Surprisingly, model simulations revealed that anchovy depends primarily on stored energy for egg production (mostly capital breeder) whereas sardine depends heavily on direct food intake (income breeder). This is related to the peculiar phenology of plankton production in the area, with mesozooplankton concentration exhibiting a sharp decrease from early summer to autumn and a subsequent increase from winter to early summer. Monthly changes in somatic condition of fish collected on board the commercial purse seine fleet followed closely the simulated mesozooplankton concentration. Finally, model simulations showed that, when both the anchovy and sardine stocks are overexploited, the mesozooplankton concentration increases, which may open up ecological space for competing species. The importance of protecting the recruit spawners was highlighted with model simulations testing the effect of changing the timing of the existing 2.5-months closed period. Optimum timing for fishery closure is different for anchovy and sardine because of their opposite spawning and recruitment periods.


Sujet(s)
Poissons/croissance et développement , Étapes du cycle de vie , Modèles théoriques , Animaux , Calibrage , Pêcheries , Chaine alimentaire , Mer Méditerranée
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...