Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Front Mol Neurosci ; 17: 1466125, 2024.
Article de Anglais | MEDLINE | ID: mdl-39328272

RÉSUMÉ

Every-other-day fasting (EODF) is a form of caloric restriction that alternates between periods of normal eating and fasting, aimed at preventing and treating diseases. This approach has gained widespread usage in basic research on neurological conditions, including spinal cord injury, and has demonstrated significant neuroprotective effects. Additionally, EODF is noted for its safety and feasibility, suggesting broad potential for application. This study aims to evaluate the therapeutic effects of EODF on spinal cord injury and to investigate and enhance its underlying mechanisms. Initially, the SCI rat model was utilized to evaluate the effects of EODF on pathological injury and motor function. Subsequently, considering the enhancement of metabolism through EODF, bile acid metabolism in SCI rats was analyzed using liquid chromatography-mass spectrometry (LC-MS), and the expression of the bile acid receptor TGR5 was further assessed. Ultimately, it was confirmed that EODF influences the activation of microglia and NLRP3 inflammasomes associated with the TGR5 signaling, along with the expression of downstream pyroptosis pathway related proteins and inflammatory cytokines, as evidenced by the activation of the NLRP3/Caspase-1/GSDMD pyroptosis pathway in SCI rats. The results demonstrated that EODF significantly enhanced the recovery of motor function and reduced pathological damage in SCI rats while controlling weight gain. Notably, EODF promoted the secretion of bile acid metabolites, activated TGR5, and inhibited the NLRP3/Caspase-1/GSDMD pyroptosis pathway and inflammation in these rats. In summary, EODF could mitigate secondary injury after SCI and foster functional recovery by improving metabolism, activating the TGR5 signaling and inhibiting the NLRP3 pyroptosis pathway.

2.
Front Pharmacol ; 15: 1416992, 2024.
Article de Anglais | MEDLINE | ID: mdl-38994197

RÉSUMÉ

Vascular smooth muscle cells (VSMCs) are integral to the pathophysiology of cardiovascular diseases (CVDs). Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, plays a crucial role in epigenetic regulation of VSMCs gene expression. Emerging researches suggest that EZH2 has a dual role in VSMCs, contingent on the pathological context of specific CVDs. This mini-review synthesizes the current knowledge on the mechanisms by which EZH2 regulates VSMC proliferation, migration and survival in the context of CVDs. The goal is to underscore the potential of EZH2 as a therapeutic target for CVDs treatment. Modulating EZH2 and its associated epigenetic pathways in VSMCs could potentially ameliorate vascular remodeling, a key factor in the progression of many CVDs. Despite the promising outlook, further investigation is warranted to elucidate the epigenetic mechanisms mediated by EZH2 in VSMCs, which may pave the way for novel epigenetic therapies for conditions such as atherosclerosis and hypertension.

3.
Front Neurosci ; 18: 1348844, 2024.
Article de Anglais | MEDLINE | ID: mdl-38440398

RÉSUMÉ

Alzheimer's disease (AD) is a prevalent neurodegenerative disease that has become one of the main factors affecting human health. It has serious impacts on individuals, families, and society. With the development of population aging, the incidence of AD will further increase worldwide. Emerging evidence suggests that many physiological metabolic processes, such as lipid metabolism, are implicated in the pathogenesis of AD. Bile acids, as the main undertakers of lipid metabolism, play an important role in the occurrence and development of Alzheimer's disease. Tauroursodeoxycholic acid, an endogenous bile acid, has been proven to possess therapeutic effects in different neurodegenerative diseases, including Alzheimer's disease. This review tries to find the relationship between bile acid metabolism and AD, as well as explore the therapeutic potential of bile acid taurocursodeoxycholic acid for this disease. The potential mechanisms of taurocursodeoxycholic acid may include reducing the deposition of Amyloid-ß protein, regulating apoptotic pathways, preventing tau hyperphosphorylation and aggregation, protecting neuronal synapses, exhibiting anti-inflammatory properties, and improving metabolic disorders. The objective of this study is to shed light on the use of tauroursodeoxycholic acid preparations in the prevention and treatment of AD, with the aim of identifying effective treatment targets and clarifying various treatment mechanisms involved in this disease.

4.
Health Phys ; 122(6): 685-695, 2022 06 01.
Article de Anglais | MEDLINE | ID: mdl-35383629

RÉSUMÉ

ABSTRACT: Ultra-short, ultra-intense laser facilities could produce ultra-intense pulsed radiation fields. Currently, only passive detectors are fit for dose measurement in this circumstance. Since the laser device could generate a dose up to tens of mSv outside the chamber in tens of picoseconds, resulting in a high instantaneous dose rate of ~107 Sv s-1, it is necessary to perform real-time dose measurement to ensure the safety of nearby workers. Due to fast response and excellent radiation resistance, a diamond-based dose measurement device was designed and developed, and its dose-rate response and its feasibility for such occasions were characterized. The measurement results showed that the detector had a good dose-rate linearity in the range of 3.39 mGy h-1 to 10.58 Gy h-1 for an x-ray source with energy of 39 keV to 208 keV. No saturation phenomenon was observed, and the experimental results were consistent with the results obtained from Monte Carlo simulation. The charge collection efficiency was about 80%. Experimental measurements and simulations with this dose measurement device were carried out based on the "SG-II" laser device. The experimental and simulation results preliminarily verified the feasibility of using the diamond detector to measure the dose generated by ultra-short, ultra-intense laser devices. The results provided valuable information for the follow-up real-time dose measurement work of ultra-short, ultra-intense laser devices.


Sujet(s)
Diamant , Radiométrie , Humains , Lasers , Méthode de Monte Carlo , Radiométrie/méthodes , Rayons X
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE