Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.222
Filtrer
1.
J Agric Food Chem ; 2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-39106077

RÉSUMÉ

Intestinal barrier hemostasis is the key to health. As a resveratrol analogue, pterostilbene (PT) has been reported to prevent dextran sodium sulfate (DSS)-induced intestinal barrier dysfunction mainly associated with the intestinal NF-κB signaling pathway. However, the exact underlying mechanisms are not yet well-defined yet. In this study, we performed RNA-sequencing analysis and unexpectedly found that alarmin S100A8 sensitively responded to DSS-induced intestinal injury. Accordingly, histologic assessments suggested that the high expression of S100A8 was accompanied by increased intestinal infiltration of macrophages, upregulated intestinal epithelial Toll-like receptor 4 (TLR-4), and activated NF-κB signaling pathway. Interestingly, the above phenomena were effectively counteracted upon the addition of PT. Furthermore, by using a coculture system of macrophage THP-1 cells and HT-29 colon cells, we identified macrophage-secreted S100A8 activated intestinal epithelial NF-κB signaling pathway through TLR-4. Taken together, these findings suggested that PT ameliorated DSS-induced intestinal barrier injury through suppression of the macrophage S100A8-intestinal epithelial TLR-4-NF-κB signaling cascade.

2.
J Inflamm Res ; 17: 5161-5176, 2024.
Article de Anglais | MEDLINE | ID: mdl-39104904

RÉSUMÉ

Background: Breviscapine has been demonstrated to have beneficial effects in ameliorating acute lung injury (ALI), yet its potential therapeutic value and molecular mechanisms in sepsis-induced ALI remain unexplored. Methods: We utilized network pharmacology approach to identify the potential targets and mechanisms of breviscapine in treating sepsis-induced ALI. To construct a murine model of sepsis, we performed cecal ligation and puncture (CLP). Hematoxylin and eosin (HE) staining and enzyme-linked immunosorbent assay (ELISA) were employed to respectively determine the pathologic changes and levels of inflammatory factors. Neutrophil count and total protein level in bronchoalveolar lavage fluid (BALF) were detected by corresponding kit. Additionally, we utilized flow cytometry, immunofluorescence, Western blotting, and real-time reverse transcription PCR (qRT-PCR) to detect cell apoptosis, protein expression, and gene expression. Finally, we used ELISA kits to detect the activity of myeloperoxidase (MPO) and caspase-8 (CASP8). Results: Breviscapine was revealed to target 81 potential proteins in the treatment of sepsis-induced ALI, while CASP8 was the most important one as demonstrated by network analysis. In vivo experiments demonstrated that breviscapine effectively reduced the severity of sepsis-induced ALI and inflammation, and significantly suppressed neutrophil infiltration in the lung tissues of CLP mice and promoted neutrophil apoptosis in the peripheral blood. In vitro experiments revealed that lipopolysaccharide (LPS)-induced neutrophil apoptosis was inhibited, and the expression and activity of CASP8 were down-regulated. Breviscapine intervention markedly up-regulated the expression and activity of CASP8, consequently activating neutrophil apoptosis and inhibiting inflammatory response by activating the NF-κB signaling pathway. Conclusion: Breviscapine is remarkably effective in improving sepsis-induced ALI, and its mechanism of action may be to induce neutrophil apoptosis, inhibit inflammatory overreaction and reduce its infiltration in pulmonary tissues by up-regulating the expression and activity of CASP8.

3.
Adv Sci (Weinh) ; : e2403201, 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39137351

RÉSUMÉ

Angiogenesis is crucial for successful bone defect repair. Co-transplanting Bone Marrow Stromal Cells (BMSCs) and Endothelial Cells (ECs) has shown promise for vascular augmentation, but it face challenges in hostile tissue microenvironments, including poor cell survival and limited efficacy. In this study, the mitochondria of human BMSCs are isolated and transplanted to BMSCs from the same batch and passage number (BMSCsmito). The transplanted mitochondria significantly boosted the ability of BMSCsmito-ECs to promote angiogenesis, as assessed by in vitro tube formation and spheroid sprouting assays, as well as in vivo transplantation experiments in balb/c mouse and SD rat models. The Dll4-Notch1 signaling pathway is found to play a key role in BMSCsmito-induced endothelial tube formation. Co-transplanting BMSCsmito with ECs in a rat cranial bone defect significantly improves functional vascular network formation, and improve bone repair outcomes. These findings thus highlight that mitochondrial transplantation, by acting through the DLL4-Notch1 signaling pathway, represents a promising therapeutic strategy for enhancing angiogenesis and improving bone repair. Hence, mitochondrial transplantation to BMSCS as a therapeutic approach for promoting angiogenesis offers valuable insights and holds much promise for innovative regenerative medicine therapies.

5.
Clin Transl Oncol ; 2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-39110396

RÉSUMÉ

OBJECTIVE: The aim of this study is to assess the efficacy of the doctor-nurse-patient workshop transitional care model on post-operative care for patients with laryngeal cancer and its influence on quality of life. METHODS: A total of 68 patients with laryngeal cancer who underwent surgical treatment at the hospital between 2021 and 2022 were included in the study. The patients were divided into two groups, a control group and a research group, each consisting of 34 patients, based on the chronological sequence of their surgeries. Patients in the control group received standard nursing care, while those in the research group received the doctor-nurse-patient workshop transitional care model in addition to standard nursing care. After 2 months of care, levels of albumin (ALB), total protein (TP), hemoglobin (Hb), and quality of life scores (measured using the Quality of Life Instrument for Head and Neck Cancer, QLICP-HN) were compared between the two groups. Additionally, the incidence of adverse events during the recovery period was assessed and compared between the two groups. RESULTS: Following 2 months of care, patients in the research group exhibited elevated ALB, TP, and Hb levels compared to those in the control group. Additionally, the average QLICP-HN scores were higher in the research group, while the incidence of adverse events was lower compared to the control group. CONCLUSION: Implementing the doctor-nurse-patient workshop transitional care model in home care for patients with laryngeal cancer can enhance their nutritional status post-surgery and improve their quality of life during home rehabilitation. This, in turn, leads to a reduction in the incidence of adverse events and complications during the recovery period.

8.
Plant Cell Physiol ; 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38985662

RÉSUMÉ

To analyze the gene involved in orchid floral development, a HD-Zip II gene PaHAT14, which specifically and highly expressed in perianth during early flower development was identified from Phalaenopsis. Transgenic Arabidopsis plants expressing 35S::PaHAT14 and 35S::PaHAT14+SRDX (fused with the repressor motif SRDX) exhibited similar altered phenotypes, including small leaves, early flowering, and bending petals with increased cuticle production. This suggests that PaHAT14 acts as a repressor. In contrast, transgenic Arabidopsis plants expressing 35S::PaHAT14+VP16 (fused with the activation domain VP16) exhibited curled leaves, late flowering, and folded petals with decreased cuticle production within hardly opened flowers. Additionally, the expression of the ERF gene DEWAX2, which negatively regulates cuticular wax biosynthesis, was down-regulated in 35S::PaHAT14 and 35S::PaHAT14+SRDX transgenic Arabidopsis, while it was up-regulated in 35S::PaHAT14+VP16 transgenic Arabidopsis. Furthermore, transient overexpression of PaHAT14 in Phalaenopsis petal/sepal increased cuticle deposition due to the down-regulation of PaERF105, a Phalaenopsis DEWAX2 orthologue. On the other hand, transient overexpression of PaERF105 decreased cuticle deposition, whereas cuticle deposition increased and the rate of epidermal water loss was reduced in PaERF105 VIGS Phalaenopsis flowers. Moreover, ectopic expression of PaERF105 not only produced phenotypes similar to those in 35S::PaHAT14+VP16 Arabidopsis but also compensated for the altered phenotypes observed in 35S::PaHAT14 and 35S::PaHAT14+SRDX Arabidopsis. These results suggest that PaHAT14 promotes cuticle deposition by negatively regulating downstream gene PaERF105 in orchid flowers.

9.
RSC Adv ; 14(30): 21991-21998, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38993504

RÉSUMÉ

This work details a novel application of MgAl-LDH nanoflowers, applied in the fabrication of humidity sensors using quartz crystal microbalance (QCM). An oscillating circuit approach has been utilized to thoroughly investigate the humidity detection characteristics of QCM sensors that are fabricated using MgAl-LDH nanoflowers. The examination encompassed various parameters such as the sensors' response, humidity hysteresis, repeatability, and stability. Experimental results clearly indicate that these MgAl-LDH nanoflower-based QCM sensors exhibit a distinct logarithmic frequency response to varying moisture levels. Notably, the sensitivity of the sensors is intricately tied to the amount of MgAl-LDH nanoflowers utilized during the deposition process. Moreover, these sensors maintain remarkable stability across a wide humidity range spanning from 11% to 97% RH. Additionally, the MgAl-LDH nanoflower-based QCM sensors possess minimal humidity hysteresis and display swift dynamic response and recovery periods, further highlighting their potential for humidity detection applications.

10.
ESC Heart Fail ; 2024 Jul 22.
Article de Anglais | MEDLINE | ID: mdl-39034866

RÉSUMÉ

Systemic aging influences various physiological processes and contributes to structural and functional decline in cardiac tissue. These alterations include an increased incidence of left ventricular hypertrophy, a decline in left ventricular diastolic function, left atrial dilation, atrial fibrillation, myocardial fibrosis and cardiac amyloidosis, elevating susceptibility to chronic heart failure (HF) in the elderly. Age-related cardiac dysfunction stems from prolonged exposure to genomic, epigenetic, oxidative, autophagic, inflammatory and regenerative stresses, along with the accumulation of senescent cells. Concurrently, age-related structural and functional changes in the vascular system, attributed to endothelial dysfunction, arterial stiffness, impaired angiogenesis, oxidative stress and inflammation, impose additional strain on the heart. Dysregulated mechanosignalling and impaired nitric oxide signalling play critical roles in the age-related vascular dysfunction associated with HF. Metabolic aging drives intricate shifts in glucose and lipid metabolism, leading to insulin resistance, mitochondrial dysfunction and lipid accumulation within cardiomyocytes. These alterations contribute to cardiac hypertrophy, fibrosis and impaired contractility, ultimately propelling HF. Systemic low-grade chronic inflammation, in conjunction with the senescence-associated secretory phenotype, aggravates cardiac dysfunction with age by promoting immune cell infiltration into the myocardium, fostering HF. This is further exacerbated by age-related comorbidities like coronary artery disease (CAD), atherosclerosis, hypertension, obesity, diabetes and chronic kidney disease (CKD). CAD and atherosclerosis induce myocardial ischaemia and adverse remodelling, while hypertension contributes to cardiac hypertrophy and fibrosis. Obesity-associated insulin resistance, inflammation and dyslipidaemia create a profibrotic cardiac environment, whereas diabetes-related metabolic disturbances further impair cardiac function. CKD-related fluid overload, electrolyte imbalances and uraemic toxins exacerbate HF through systemic inflammation and neurohormonal renin-angiotensin-aldosterone system (RAAS) activation. Recognizing aging as a modifiable process has opened avenues to target systemic aging in HF through both lifestyle interventions and therapeutics. Exercise, known for its antioxidant effects, can partly reverse pathological cardiac remodelling in the elderly by countering processes linked to age-related chronic HF, such as mitochondrial dysfunction, inflammation, senescence and declining cardiomyocyte regeneration. Dietary interventions such as plant-based and ketogenic diets, caloric restriction and macronutrient supplementation are instrumental in maintaining energy balance, reducing adiposity and addressing micronutrient and macronutrient imbalances associated with age-related HF. Therapeutic advancements targeting systemic aging in HF are underway. Key approaches include senomorphics and senolytics to limit senescence, antioxidants targeting mitochondrial stress, anti-inflammatory drugs like interleukin (IL)-1ß inhibitors, metabolic rejuvenators such as nicotinamide riboside, resveratrol and sirtuin (SIRT) activators and autophagy enhancers like metformin and sodium-glucose cotransporter 2 (SGLT2) inhibitors, all of which offer potential for preserving cardiac function and alleviating the age-related HF burden.

11.
Genet Test Mol Biomarkers ; 28(7): 267-274, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39034913

RÉSUMÉ

Background: A high-altitude environment has inhibitory effects on obesity. Tibetans are not a high-risk population for obesity, but there are still obese individuals within that population. Obesity has become a worldwide health problem, and previous studies have found that obesity is closely associated with hereditary factors. Few studies have investigated obesity in Tibetans, and the association between gene polymorphisms and obesity in Tibetans remains unclear. Methods: Our study investigated the fat mass of 140 native Tibetan individuals (70 men and 70 women) from Lhasa and analyzed the associations between polymorphisms of melanocortin 4 receptor (MC4R), Src homology 2B adapter protein 1 (SH2B1), and neuronal growth regulator 1 (NEGR1) and obesity. Result: Among Tibetan individuals, there were differences in genotype and allele frequencies between those in the obesity group and those in the healthy group at MC4R (rs17782313) and SH2B1 (rs7359397). The polymorphisms of MC4R (rs17782313) were associated with fat mass and obesity in Tibetan men and women, and there was an association between SH2B1 (rs7359397) polymorphisms and fat mass and obesity in Tibetan men. However, polymorphisms of NEGR1 (rs3101336) were not associated with fat mass or obesity in Tibetan individuals. Conclusion: Among Tibetan individuals, polymorphisms of MC4R (rs17782313) and SH2B1 (rs7359397) were associated with obesity, but NEGR1 (rs3101336) polymorphisms were not associated with obesity.


Sujet(s)
Protéines adaptatrices de la transduction du signal , Fréquence d'allèle , Prédisposition génétique à une maladie , Obésité , Polymorphisme de nucléotide simple , Récepteur de la mélanocortine de type 4 , Humains , Récepteur de la mélanocortine de type 4/génétique , Mâle , Femelle , Obésité/génétique , Tibet , Adulte , Polymorphisme de nucléotide simple/génétique , Protéines adaptatrices de la transduction du signal/génétique , Adulte d'âge moyen , Fréquence d'allèle/génétique , Asiatiques/génétique , Génotype , Allèles , Études cas-témoins , Peuples d'Asie de l'Est , Molécules d'adhérence cellulaire neuronale , Protéines liées au GPI
12.
Biomed Pharmacother ; 178: 117133, 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39024837

RÉSUMÉ

Primary central nervous system lymphoma (PCNSL) is a group of malignant brain tumors with a poor prognosis, and new therapeutic approaches for this tumor urgently need to be investigated. Formulated from a long-standing anti-inflammatory drugs, ACT001 has demonstrated in clinical research to be able to pass through the blood-brain barrier (BBB) and affect the central nervous system. The effects of ACT001 on PCNSL cell apoptosis, proliferation and immune-related indexes were detected by flow cytometry, and the efficacy of ACT001 was verified in vivo by constructing a mouse PCNSL tumor model. ACT001 significantly inhibited PCNSL cell proliferation and induced apoptosis in vitro. In addition, ACT001 can significantly inhibit the PD-1/PD-L1 expression and restore the function of T cells, so that the immune system cannot allow tumor cells to escape. In vivo experiments show that co-infusion of ACT001 and T cells effectively inhibits PCNSL tumor growth in NSG mice. Our work describes the inhibitory effect of ACT001 on the PCNSL cell line and demonstrated the inhibitory effect of ACT001 on immune checkpoints.

13.
J Family Med Prim Care ; 13(6): 2477-2484, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-39027832

RÉSUMÉ

Objective: This study aims to explore the relationship between different endometrial preparations and pregnancy outcomes among patients with regular ovulatory cycles in order to find the best endometrial preparation methods in the freeze-thaw embryo transfer (FET) cycle. Materials and Methods: This is a retrospective study to investigate FET pregnancy outcomes in women who had a regular menstrual cycle, were younger than 35 years old, and underwent a modified natural cycle (mNC), ovulation induction (OI), or a hormone replacement treatment (HRT) cycle. A total of 1071 frozen cycles were included for analysis. Results: The implantation rate and live birth rate (LBR) in the OI group show a significant difference when compared to the mNC and HRT groups (P < 0.01). After adjusting for confounding factors, the logistic regression analysis revealed that the number of embryos transferred, the embryo stage, and quality were significantly associated with clinical pregnancy rate and LBR. The LBR was additionally affected by the mode of the endometrial preparation; the OI cycle could increase LBR. Conclusions: Endometrial preparation methods affect the LBR in women with a regular menstrual cycle. The OI cycle had an advantage in the LBR of FET.

14.
Foods ; 13(13)2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38998525

RÉSUMÉ

Estimating the impact of pesticide residue bioaccessibility in fruits on dietary exposure is a complex task in human health risk assessment. This research investigated the bioaccessibility of ten commonly used and detected pesticides in bananas and mangoes, as well as the factors influencing it, using an in vitro model. The highest bioaccessibility was observed at pH levels of 2.5 and 6.5 in the gastric and intestinal stages, respectively. Bioaccessibility decreased significantly with increasing solid/liquid ratios for most pesticides. The consumption of protein and four dietary components (carbohydrates, protein, lipids, and dietary fiber) could significantly reduce pesticide bioaccessibility by 9.89-48.32% (p < 0.05). Bioaccessibility in oral and gastric stages among four populations followed the order of adults/the elderly > children > infants, due to decreasing concentrations of α-amylase and pepsin. Pesticides in bananas generally exhibited a higher bioaccessibility (18.65-82.97%) compared to that in mangoes (11.68-87.57%). Bioaccessibility showed a negative correlation with the Log P values of the target pesticide, while no clear relationship was found between bioaccessibility and initial pesticide concentrations. Incorporating bioaccessible pesticide concentrations into risk assessments could lower dietary risk estimates by 11.85-79.57%. Assessing human exposure to pesticides based on bioaccessibility would greatly improve the accuracy of the risk assessment.

15.
Environ Geochem Health ; 46(9): 346, 2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-39073472

RÉSUMÉ

Heavy metals (HMs) seriously harm soil environment and threaten crop quality and human health. The aim of the study was to investigate the characteristics, quantify the sources and assess the risks of HMs in soil of upper Bailang River Basin (UBRB). The results indicated that the soils in UBRB were at a non-polluted level and posed a low ecological risk to the environment as a whole. The main pollutants were Ni and Cr obtained by indices Pi and Igeo. Based on the consideration of toxicity, the fuzzy comprehensive evaluation model and Ei index revealed that Hg and Cd were dominating pollutants and ecological risk factors of soil in UBRB. The positive matrix factorization model ascertained five potential sources of soil HMs, namely, plastic processing, energy activities, parent material, transportation and agriculture mixed source and industrial manufacturing, with contribution rates of 17%, 7%, 15%, 29% and 32%, respectively. Natural source primarily determined the non-carcinogenic risk for all populations, accounting for about 43% of the total risk. Industrial manufacturing mainly determined the carcinogenic risk, accounting for about 45%. For adults, the risk was acceptable for most of the sample points. For children, potential non-carcinogenic risks were present in 13.19% of the sample sites, which were mainly located in the west, and unacceptable carcinogenic risks were present in 57.21% of the sample sites, which were mainly concentrated in the western and central parts.


Sujet(s)
Surveillance de l'environnement , Métaux lourds , Rivières , Polluants du sol , Métaux lourds/analyse , Appréciation des risques , Polluants du sol/analyse , Chine , Humains , Rivières/composition chimique , Surveillance de l'environnement/méthodes , Adulte , Enfant
16.
Int J Mol Sci ; 25(14)2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-39062864

RÉSUMÉ

The dimensions of organs such as flowers, leaves, and seeds are governed by processes of cellular proliferation and expansion. In soybeans, the dimensions of these organs exhibit a strong correlation with crop yield, quality, and other phenotypic traits. Nevertheless, there exists a scarcity of research concerning the regulatory genes influencing flower size, particularly within the soybean species. In this study, 309 samples of 3 soybean types (123 cultivar, 90 landrace, and 96 wild) were re-sequenced. The microscopic phenotype of soybean flower organs was photographed using a three-eye microscope, and the phenotypic data were extracted by means of computer vision. Pearson correlation analysis was employed to assess the relationship between petal and seed phenotypes, revealing a strong correlation between the sizes of these two organs. Through GWASs, SNP loci significantly associated with flower organ size were identified. Subsequently, haplotype analysis was conducted to screen for upstream and downstream genes of these loci, thereby identifying potential candidate genes. In total, 77 significant SNPs associated with vexil petals, 562 significant SNPs associated with wing petals, and 34 significant SNPs associated with keel petals were found. Candidate genes were screened by candidate sites, and haplotype analysis was performed on the candidate genes. Finally, the present investigation yielded 25 and 10 genes of notable significance through haplotype analysis in the vexil and wing regions, respectively. Notably, Glyma.07G234200, previously documented for its high expression across various plant organs, including flowers, pods, leaves, roots, and seeds, was among these identified genes. The research contributes novel insights to soybean breeding endeavors, particularly in the exploration of genes governing organ development, the selection of field materials, and the enhancement of crop yield. It played a role in the process of material selection during the growth period and further accelerated the process of soybean breeding material selection.


Sujet(s)
Fleurs , Étude d'association pangénomique , Glycine max , Phénotype , Polymorphisme de nucléotide simple , Glycine max/génétique , Glycine max/anatomie et histologie , Glycine max/croissance et développement , Fleurs/génétique , Fleurs/anatomie et histologie , Fleurs/croissance et développement , Haplotypes , Locus de caractère quantitatif , Graines/génétique , Graines/croissance et développement , Graines/anatomie et histologie
17.
Acad Radiol ; 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38955593

RÉSUMÉ

RATIONALE AND OBJECTIVES: To evaluate glymphatic function changes and their relationships with clinical features in patients with metabolic dysfunction-associated fatty liver disease (MAFLD), thereby facilitating early intervention before this disease progresses to cirrhosis. MATERIALS AND METHODS: A cross-sectional cohort of 46 pre-cirrhotic MAFLD patients and 30 age-, sex-, and education-matched controls was enrolled, with diffusion-tensor imaging (DTI) data, laboratory and neurocognitive scores collected. The DTI analysis along the perivascular space (DTI-ALPS) index was computed for qualifying glymphatic function. Generalized linear model and partial correlation analyses were applied to evaluate relationships between the ALPS index and clinical variables. RESULTS: MAFLD group exhibited a decreased ALPS index and increased diffusivity along the y-axis in the projection fiber compared to the controls. The altered ALPS index was associated with clock drawing test (CDT) score (3.931 [0.914, 6.947], P = 0.011) and was correlated with diastolic pressure level (r = -0.315, P = 0.033) in MAFLD group. The relationships of ALPS index with CDT score (6.263 [2.069, 10.458], P = 0.003) and diastolic pressure level (r = -0.518, P = 0.014) remained in the MAFLD with metabolic syndrome (MetS) group. Furthermore, the ALPS index was even associated with Auditory Verbal Learning Test-Immediate recall score (-23.853 [-45.417, -2.289], P = 0.030) in MAFLD with MetS group. CONCLUSION: MAFLD patients may have a glymphatic dysfunction prior to cirrhosis, and this alteration may be related to cognition and diastolic pressure. Glymphatic dysfunction has a more severe impact on cognition when MAFLD patient is accompanied by MetS.

18.
BMC Genomics ; 25(1): 712, 2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39044139

RÉSUMÉ

BACKGROUND: Yaks are a vital livestock in the Qinghai-Tibetan Plateau area for providing food products, maintaining sustainable ecosystems, and promoting cultural heritage. Because of uncontrolled mating, it is impossible to estimate inbreeding level of yak populations using the pedigree-based approaches. With the aims to accurately evaluate inbreeding level of two Chinese yak populations (Maiwa and Jiulong), we obtained genome-wide single nucleotide polymorphisms (SNPs) by DNA sequencing and calculated five SNP-by-SNP estimators ([Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]), as well as two segment-based estimators of runs of homozygosity (ROH, [Formula: see text]) and homozygous-by-descent (HBD, [Formula: see text]). Functional implications were analyzed for the positional candidate genes located within the related genomic regions. RESULTS: A total of 151,675 and 190,955 high-quality SNPs were obtained from 71 Maiwa and 30 Jiulong yaks, respectively. Jiulong had greater genetic diversity than Maiwa in terms of allele frequency and nucleotide diversity. The two populations could be genetically distinguished by principal component analysis, with the mean differentiation index (Fst) of 0.0054. The greater genomic inbreeding levels of Maiwa yaks were consistently supported by all five SNP-by-SNP estimators. Based on simple proportion of homozygous SNPs ([Formula: see text]), a lower inbreeding level was indicated by three successfully sequenced old leather samples that may represent historical Maiwa yaks about five generations ago. There were 3304 ROH detected among all samples, with mean and median length of 1.97 Mb and 1.0 Mb, respectively. A total of 94 HBD segments were found among all samples, whereas 92 of them belonged to the shortest class with the mean length of 10.9 Kb. Based on the estimates of [Formula: see text] and [Formula: see text], however, there was no difference in inbreeding level between Maiwa and Jiulong yaks. Within the genomic regions with the significant Fst or enriched by ROH, we found several candidate genes and pathways that have been reported to be related to diverse production traits in farm animals. CONCLUSIONS: We successfully evaluated the genomic inbreeding level of two Chinese yak populations. Although different estimators resulted in inconsistent conclusions on their genomic inbreeding levels, our results may be helpful to implement the genetic conservation and utilization programs for the two yak populations.


Sujet(s)
Génomique , Croisement consanguin , Polymorphisme de nucléotide simple , Animaux , Bovins/génétique , Génomique/méthodes , Chine , Fréquence d'allèle , Génétique des populations , Homozygote , Génome
19.
Front Nutr ; 11: 1416910, 2024.
Article de Anglais | MEDLINE | ID: mdl-39036495

RÉSUMÉ

With the advancement of medical care and the continuous improvement of organ support technologies, some critically ill patients survive the acute phase of their illness but still experience persistent organ dysfunction, necessitating long-term reliance on intensive care and organ support, known as chronic critical illness. Chronic critical illness is characterized by prolonged hospital stays, high mortality rates, and significant resource consumption. Patients with chronic critical illness often suffer from malnutrition, compromised immune function, and poor baseline health, which, combined with factors like shock or trauma, can lead to intestinal mucosal damage. Therefore, effective nutritional intervention for patients with chronic critical illness remains a key research focus. Nutritional therapy has emerged as one of the essential components of the overall treatment strategy for chronic critical illness. This paper aims to provide a comprehensive review of the latest research progress in nutritional support therapy for patients with chronic critical illness.

20.
Small ; : e2402177, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39077951

RÉSUMÉ

Accurate assessment of phenotypic and genotypic characteristics of bacteria can facilitate comprehensive cataloguing of all the resistance factors for better understanding of antibiotic resistance. However, current methods primarily focus on individual phenotypic or genotypic profiles across different colonies. Here, a Digital microfluidic-based automated assay for whole-genome sequencing of single-antibiotic-resistant bacteria is reported, enabling Genotypic and Phenotypic Analysis of antibiotic-resistant strains (Digital-GPA). Digital-GPA can efficiently isolate and sequence antibiotic-resistant bacteria illuminated by fluorescent D-amino acid (FDAA)-labeling, producing high-quality single-cell amplified genomes (SAGs). This enables identifications of both minor and major mutations, pinpointing substrains with distinctive resistance mechanisms. Digital-GPA can directly process clinical samples to detect and sequence resistant pathogens without bacterial culture, subsequently provide genetic profiles of antibiotic susceptibility, promising to expedite the analysis of hard-to-culture or slow-growing bacteria. Overall, Digital-GPA opens a new avenue for antibiotic resistance analysis by providing accurate and comprehensive molecular profiles of antibiotic resistance at single-cell resolution.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE