Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 33
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
bioRxiv ; 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38979133

RÉSUMÉ

Purpose: Relaxation correction is crucial for accurately estimating metabolite concentrations measured using in vivo magnetic resonance spectroscopy (MRS). However, the majority of MRS quantification routines assume that relaxation values remain constant across the lifespan, despite prior evidence of T 2 changes with aging for multiple of the major metabolites. Here, we comprehensively investigate correlations between T 2 and age in a large, multi-site cohort. Methods: We recruited approximately 10 male and 10 female participants from each decade of life: 18-29, 30-39, 40-49, 50-59, and 60+ years old ( n =101 total). We collected PRESS data at 8 TEs (30, 50, 74, 101, 135, 179, 241, and 350 ms) from voxels placed in white-matter-rich centrum semiovale (CSO) and gray-matter-rich posterior cingulate cortex (PCC). We quantified metabolite amplitudes using Osprey and fit exponential decay curves to estimate T 2 . Results: Older age was correlated with shorter T 2 for tNAA, tCr 3.0 , tCr 3.9 , tCho, Glx, and tissue water in CSO and PCC; r s = -0.21 to -0.65, all p <0.05, FDR-corrected for multiple comparisons. These associations remained statistically significant when controlling for cortical atrophy. T 2 values did not differ across the adult lifespan for mI. By region, T 2 values were longer in the CSO for tNAA, tCr 3.0 , tCr 3.9 , Glx, and tissue water and longer in the PCC for tCho and mI. Conclusion: These findings underscore the importance of considering metabolite T 2 changes with aging in MRS quantification. We suggest that future 3T work utilize the equations presented here to estimate age-specific T 2 values instead of relying on uniform default values.

2.
bioRxiv ; 2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38854088

RÉSUMÉ

Background: Anorexia nervosa (AN) is a mental and behavioral health condition characterized by an intense fear of weight or fat gain, severe restriction of food intake resulting in low body weight, and distorted self-perception of body shape or weight. While substantial research has focused on general anxiety in AN, less is known about eating-related anxiety and its underlying neural mechanisms. Therefore, we sought to characterize anxiety-to-eat in AN and examine the neurometabolic profile within the dorsal anterior cingulate cortex (dACC), a brain region putatively involved in magnifying the threat response. Methods: Women seeking inpatient treatment for AN and women of healthy weight without a lifetime history of an eating disorder (healthy controls; HC) completed a computer-based behavioral task assessing anxiety-to-eat in response to images of higher (HED) and lower (LED) energy density foods. Participants also underwent magnetic resonance spectroscopy of the dACC in a 3 Tesla scanner. Results: The AN group reported greater anxiety to eat HED and LED foods relative to the HC group. Both groups reported greater anxiety to eat HED foods relative to LED foods. The neurometabolite myo-inositol (mI) was lower in the dACC in AN relative to HC, and mI levels negatively predicted anxiety to eat HED but not LED foods in the AN group only. mI levels in the dACC were independent of body weight, body mass, and general anxiety. Conclusions: These findings provide critical new insight into the clinically challenging feature and underlying neural mechanisms of eating-related anxiety and indicate mI levels in the dACC could serve as a novel biomarker of illness severity that is independent of body weight to identify individuals vulnerable to disordered eating or eating pathology as well as a potential therapeutic target.

3.
BMC Plant Biol ; 24(1): 593, 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38910247

RÉSUMÉ

BACKGROUND: Long-term continuous cropping has resulted in the frequent occurrence of fusarium wilt of watermelon (Citrullus lanatus). AMF inoculation can alleviate the continuous cropping barrier and reduce the incidence of fusarium wilt of watermelon. Our previous study found that the root exudates of mycorrhizal watermelon can enhance watermelon resistance to this disorder. It is necessary to further isolate and identify the specific compounds in root exudates of mycorrhizal watermelon and explore their control effects on fusarium wilt of continuous cropping watermelon. RESULT: The results of this study showed that the root system of watermelon seedlings inoculated with AMF (Funneliformis mosseae or Glomus versiforme) secreted diisooctyl phthalate (A) and dibutyl phthalate (B). Compared with water treatment, treatment with 0.1 ml/L (A1, B1), 0.5 ml/L (A2, B2) and 1 ml/L (A3, B3) of A or B significantly increased soil enzyme activities, the numbers of bacteria and actinomycetes, and the bacteria/fungi ratio in the rhizosphere. Furthermore, the Disease indexes (DI) of A1 and B3 were 25% and 20%, respectively, while the prevention and control effects (PCE) were 68.8% and 75%, respectively. In addition, diisooctyl phthalate or dibutyl phthalate increased the proportions of Gemmatimonadetes, Chloroflexi, and Acidobacteria in the rhizosphere of continuous cropping watermelon, and decreased the proportions of Proteobacteria and Firmicutes, with Novosphingobium, Kaistobacter, Bacillus, and Acinetobacter as the predominant bacteria. Compared with the water treatment, the abundance of Neosphingosaceae, Kateybacterium and Bacillus in the A1 group was increased by 7.33, 2.14 and 2.18 times, respectively, while that in the B2 group was increased by 60.05%, 80.24% and 1 time, respectively. In addition, exogenous diisooctyl phthalate and dibutyl phthalate were shown to promote growth parameters (vine length, stem diameter, fresh weight and dry weight) and antioxidant enzyme system activities (SOD, POD and CAT) of continuous cropping watermelon. CONCLUSION: Lower watermelon fusarium wilt incidence in mycorrhizal watermelons was associated with phthalate secretion in watermelons after AMF inoculation. Exogenous diisooctyl phthalate and dibutyl phthalate could alleviate the continuous cropping disorder of watermelon, reduce the incidence of fusarium wilt, and promote the growth of watermelon by increasing the enzyme activities and the proportion of beneficial bacteria in rhizosphere soil. In addition, the low concentration of phthalate diisooctyl and high concentration of phthalic acid dibutyl works best. Therefore, a certain concentration of phthalates in the soil can help alleviate continuous cropping obstacles.


Sujet(s)
Citrullus , Fusarium , Mycorhizes , Acides phtaliques , Maladies des plantes , Racines de plante , Microbiologie du sol , Citrullus/microbiologie , Citrullus/croissance et développement , Mycorhizes/physiologie , Maladies des plantes/microbiologie , Maladies des plantes/prévention et contrôle , Racines de plante/microbiologie , Racines de plante/croissance et développement , Acides phtaliques/métabolisme , Bactéries/isolement et purification , Bactéries/effets des médicaments et des substances chimiques , Sol/composition chimique , Rhizosphère
4.
J Neurosci Methods ; 409: 110206, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38942238

RÉSUMÉ

BACKGROUND: To examine data quality and reproducibility using ISTHMUS, which has been implemented as the standardized MR spectroscopy sequence for the multi-site Healthy Brain and Child Development (HBCD) study. METHODS: ISTHMUS is the consecutive acquisition of short-TE PRESS (32 transients) and long-TE HERCULES (224 transients) data with dual-TE water reference scans. Voxels were positioned in the centrum semiovale, dorsal anterior cingulate cortex, posterior cingulate cortex and bilateral thalamus regions. After acquisition, ISTHMUS data were separated into the PRESS and HERCULES portions for analysis and modeled separately using Osprey. In vivo experiments were performed in 10 healthy volunteers (6 female; 29.5±6.6 years). Each volunteer underwent two scans on the same day. Differences in metabolite measurements were examined. T2 correction based on the dual-TE water integrals were compared with: 1) T2 correction based on the default white matter and gray matter T2 reference values in Osprey and 2) shorter WM and GM T2 values from recent literature. RESULTS: No significant difference in linewidth was observed between PRESS and HERCULES. Bilateral thalamus spectra had produced significantly higher (p<0.001) linewidth compared to the other three regions. Linewidth measurements were similar between scans, with scan-to-scan differences under 1 Hz for most subjects. Paired t-tests indicated a significant difference only in PRESS NAAG between the two thalamus scans (p=0.002). T2 correction based on shorter T2 values showed better agreement to the dual-TE water integral ratio. CONCLUSIONS: ISTHMUS facilitated data acquisition and post-processing and reduced operator workload to eliminate potential human error.

5.
Neuroimage ; 293: 120632, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38701994

RÉSUMÉ

During aging, the brain is subject to greater oxidative stress (OS), which is thought to play a critical role in cognitive impairment. Glutathione (GSH), as a major antioxidant in the brain, can be used to combat OS. However, how brain GSH levels vary with age and their associations with cognitive function is unclear. In this study, we combined point-resolved spectroscopy and edited spectroscopy sequences to investigate extended and closed forms GSH levels in the anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and occipital cortex (OC) of 276 healthy participants (extended form, 166 females, age range 20-70 years) and 15 healthy participants (closed form, 7 females, age range 26-56 years), and examined their relationships with age and cognitive function. The results revealed decreased extended form GSH levels with age in the PCC among 276 participants. Notably, the timecourse of extended form GSH level changes in the PCC and ACC differed between males and females. Additionally, positive correlations were observed between extended form GSH levels in the PCC and OC and visuospatial memory. Additionally, a decreased trend of closed form GSH levels with age was also observed in the PCC among 15 participants. Taken together, these findings enhance our understanding of the brain both closed and extended form GSH time course during normal aging and associations with sex and memory, which is an essential first step for understanding the neurochemical underpinnings of healthy aging.


Sujet(s)
Vieillissement , Glutathion , Humains , Femelle , Adulte d'âge moyen , Mâle , Adulte , Sujet âgé , Glutathion/métabolisme , Vieillissement/métabolisme , Vieillissement/physiologie , Jeune adulte , Mémoire spatiale/physiologie , Lobe occipital/métabolisme , Gyrus du cingulum/métabolisme , Encéphale/métabolisme
6.
Magn Reson Med ; 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38748853

RÉSUMÉ

PURPOSE: To develop a 3D, high-sensitivity CEST mapping technique based on the 3D stack-of-spirals (SOS) gradient echo readout, the proposed approach was compared with conventional acquisition techniques and evaluated for its efficacy in concurrently mapping of guanidino (Guan) and amide CEST in human brain at 3 T, leveraging the polynomial Lorentzian line-shape fitting (PLOF) method. METHODS: Saturation time and recovery delay were optimized to achieve maximum CEST time efficiency. The 3DSOS method was compared with segmented 3D EPI (3DEPI), turbo spin echo, and gradient- and spin-echo techniques. Image quality, temporal SNR (tSNR), and test-retest reliability were assessed. Maps of Guan and amide CEST derived from 3DSOS were demonstrated on a low-grade glioma patient. RESULTS: The optimized recovery delay/saturation time was determined to be 1.4/2 s for Guan and amide CEST. In addition to nearly doubling the slice number, the gradient echo techniques also outperformed spin echo sequences in tSNR: 3DEPI (193.8 ± 6.6), 3DSOS (173.9 ± 5.6), and GRASE (141.0 ± 2.7). 3DSOS, compared with 3DEPI, demonstrated comparable GuanCEST signal in gray matter (GM) (3DSOS: [2.14%-2.59%] vs. 3DEPI: [2.15%-2.61%]), and white matter (WM) (3DSOS: [1.49%-2.11%] vs. 3DEPI: [1.64%-2.09%]). 3DSOS also achieves significantly higher amideCEST in both GM (3DSOS: [2.29%-3.00%] vs. 3DEPI: [2.06%-2.92%]) and WM (3DSOS: [2.23%-2.66%] vs. 3DEPI: [1.95%-2.57%]). 3DSOS outperforms 3DEPI in terms of scan-rescan reliability (correlation coefficient: 3DSOS: 0.58-0.96 vs. 3DEPI: -0.02 to 0.75) and robustness to motion as well. CONCLUSION: The 3DSOS CEST technique shows promise for whole-cerebrum CEST imaging, offering uniform contrast and robustness against motion artifacts.

7.
Magn Reson Med ; 2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38818623

RÉSUMÉ

PURPOSE: The J-difference edited γ-aminobutyric acid (GABA) signal is contaminated by other co-edited signals-the largest of which originates from co-edited macromolecules (MMs)-and is consequently often reported as "GABA+." MM signals are broader and less well-characterized than the metabolites, and are commonly approximated using a Gaussian model parameterization. Experimentally measured MM signals are a consensus-recommended alternative to parameterized modeling; however, they are relatively under-studied in the context of edited MRS. METHODS: To address this limitation in the literature, we have acquired GABA-edited MEGA-PRESS data with pre-inversion to null metabolite signals in 13 healthy controls. An experimental MM basis function was derived from the mean across subjects. We further derived a new parameterization of the MM signals from the experimental data, using multiple Gaussians to accurately represent their observed asymmetry. The previous single-Gaussian parameterization, mean experimental MM spectrum and new multi-Gaussian parameterization were compared in a three-way analysis of a public MEGA-PRESS dataset of 61 healthy participants. RESULTS: Both the experimental MMs and the multi-Gaussian parameterization exhibited reduced fit residuals compared to the single-Gaussian approach (p = 0.034 and p = 0.031, respectively), suggesting they better represent the underlying data than the single-Gaussian parameterization. Furthermore, both experimentally derived models estimated larger MM fractional contribution to the GABA+ signal for the experimental MMs (58%) and multi-Gaussian parameterization (58%), compared to the single-Gaussian approach (50%). CONCLUSIONS: Our results indicate that single-Gaussian parameterization of edited MM signals is insufficient and that both experimentally derived GABA+ spectra and their parameterized replicas improve the modeling of GABA+ spectra.

8.
NMR Biomed ; : e5152, 2024 Apr 02.
Article de Anglais | MEDLINE | ID: mdl-38565525

RÉSUMÉ

Relaxation correction is an integral step in quantifying brain metabolite concentrations measured by in vivo magnetic resonance spectroscopy (MRS). While most quantification routines assume constant T1 relaxation across age, it is possible that aging alters T1 relaxation rates, as is seen for T2 relaxation. Here, we investigate the age dependence of metabolite T1 relaxation times at 3 T in both gray- and white-matter-rich voxels using publicly available metabolite and metabolite-nulled (single inversion recovery TI = 600 ms) spectra acquired at 3 T using Point RESolved Spectroscopy (PRESS) localization. Data were acquired from voxels in the posterior cingulate cortex (PCC) and centrum semiovale (CSO) in 102 healthy volunteers across 5 decades of life (aged 20-69 years). All spectra were analyzed in Osprey v.2.4.0. To estimate T1 relaxation times for total N-acetyl aspartate at 2.0 ppm (tNAA2.0) and total creatine at 3.0 ppm (tCr3.0), the ratio of modeled metabolite residual amplitudes in the metabolite-nulled spectrum to the full metabolite signal was calculated using the single-inversion-recovery signal equation. Correlations between T1 and subject age were evaluated. Spearman correlations revealed that estimated T1 relaxation times of tNAA2.0 (rs = -0.27; p < 0.006) and tCr3.0 (rs = -0.40; p < 0.001) decreased significantly with age in white-matter-rich CSO, and less steeply for tNAA2.0 (rs = -0.228; p = 0.005) and (not significantly for) tCr3.0 (rs = -0.13; p = 0.196) in graymatter-rich PCC. The analysis harnessed a large publicly available cross-sectional dataset to test an important hypothesis, that metabolite T1 relaxation times change with age. This preliminary study stresses the importance of further work to measure age-normed metabolite T1 relaxation times for accurate quantification of metabolite levels in studies of aging.

9.
bioRxiv ; 2024 Apr 18.
Article de Anglais | MEDLINE | ID: mdl-38659947

RÉSUMÉ

Background: To examine data quality and reproducibility using ISTHMUS, which has been implemented as the standardized MR spectroscopy sequence for the multi-site Healthy Brain and Child Development (HBCD) study. Methods: ISTHMUS is the consecutive acquisition of short-TE PRESS (32 transients) and long-TE HERCULES (224 transients) data with dual-TE water reference scans. Voxels were positioned in the centrum semiovale, dorsal anterior cingulate cortex, posterior cingulate cortex and bilateral thalamus regions. After acquisition, ISTHMUS data were separated into the PRESS and HERCULES portions for analysis and modeled separately using Osprey. In vivo experiments were performed in 10 healthy volunteers (6 female; 29.5±6.6 years). Each volunteer underwent two scans on the same day. Differences in metabolite measurements were examined. T2 correction based on the dual-TE water integrals were compared with: 1) T2 correction based the default white matter and gray matter T2 reference values in Osprey; 2) shorter WM and GM T2 values from recent literature; and 3) reduced CSF fractions. Results: No significant difference in linewidth was observed between PRESS and HERCULES. Bilateral thalamus spectra had produced significantly higher (p<0.001) linewidth compared to the other three regions. Linewidth measurements were similar between scans, with scan-to-scan differences under 1 Hz for most subjects. Paired t-tests indicated a significant difference only in PRESS NAAG between the two thalamus scans (p=0.002). T2 correction based on shorter T2 values showed better agreement to the dual-TE water integral ratio. Conclusions: ISTHMUS facilitated and standardized acquisition and post-processing and reduced operator workload to eliminate potential human error.

10.
Autism Res ; 17(3): 512-528, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38279628

RÉSUMÉ

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Altered neurometabolite levels, including glutathione (GSH) and gamma-aminobutyric acid (GABA), have been proposed as potential contributors to the biology underlying ASD. This study investigated whether cerebral GSH or GABA levels differ between a cohort of children aged 8-12 years with ASD (n = 52) and typically developing children (TDC, n = 49). A comprehensive analysis of GSH and GABA levels in multiple brain regions, including the primary motor cortex (SM1), thalamus (Thal), medial prefrontal cortex (mPFC), and supplementary motor area (SMA), was conducted using single-voxel HERMES MR spectroscopy at 3T. The results revealed no significant differences in cerebral GSH or GABA levels between the ASD and TDC groups across all examined regions. These findings suggest that the concentrations of GSH (an important antioxidant and neuromodulator) and GABA (a major inhibitory neurotransmitter) do not exhibit marked alterations in children with ASD compared to TDC. A statistically significant positive correlation was observed between GABA levels in the SM1 and Thal regions with ADHD inattention scores. No significant correlation was found between metabolite levels and hyper/impulsive scores of ADHD, measures of core ASD symptoms (ADOS-2, SRS-P) or adaptive behavior (ABAS-2). While both GSH and GABA have been implicated in various neurological disorders, the current study provides valuable insights into the specific context of ASD and highlights the need for further research to explore other neurochemical alterations that may contribute to the pathophysiology of this complex disorder.


Sujet(s)
Trouble du spectre autistique , Trouble autistique , Enfant , Humains , Spectroscopie par résonance magnétique/méthodes , Trouble autistique/métabolisme , Encéphale , Glutathion/métabolisme , Acide gamma-amino-butyrique/métabolisme
11.
NMR Biomed ; 37(4): e5076, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38091628

RÉSUMÉ

Literature values vary widely for within-subject test-retest reproducibility of gamma-aminobutyric acid (GABA) measured with edited magnetic resonance spectroscopy (MRS). Reasons for this variation remain unclear. Here, we tested whether three acquisition parameters-(1) sequence complexity (two-experiment MEscher-GArwood Point RESolved Spectroscopy [MEGA-PRESS] vs. four-experiment Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy [HERMES]); (2) editing pulse duration (14 vs. 20 ms); and (3) scanner frequency drift (interleaved water referencing [IWR] turned ON vs. OFF)-and two linear combination modeling variations-(1) three different coedited macromolecule models (called "1to1GABA", "1to1GABAsoft", and "3to2MM" in the Osprey software package); and (2) 0.55- versus 0.4-ppm spline baseline knot spacing-affected the within-subject coefficient of variation of GABA + macromolecules (GABA+). We collected edited MRS data from the dorsal anterior cingulate cortex from 20 participants (mean age: 30.8 ± 9.5 years; 10 males). Test and retest scans were separated by removing the participant from the scanner for 5-10 min. Each acquisition consisted of two MEGA-PRESS and two HERMES sequences with editing pulse durations of 14 and 20 ms (referred to here as MEGA-14, MEGA-20, HERMES-14, and HERMES-20; all TE = 80 ms, 224 averages). We identified the best test-retest reproducibility following postprocessing with a composite model of the 0.9- and 3-ppm macromolecules ("3to2MM"); this model performed particularly well for the HERMES data. Furthermore, sparser (0.55- compared with 0.4-ppm) spline baseline knot spacing yielded generally better test-retest reproducibility for GABA+. Replicating our prior results, linear combination modeling in Osprey compared with simple peak fitting in Gannet resulted in substantially better test-retest reproducibility. However, reproducibility did not consistently differ for MEGA-PRESS compared with HERMES, for 14- compared with 20-ms editing pulses, or for IWR-ON versus IWR-OFF. These results highlight the importance of model selection for edited MRS studies of GABA+, particularly for clinical studies that focus on individual patient differences in GABA+ or changes following an intervention.


Sujet(s)
Encéphale , Acide gamma-amino-butyrique , Mâle , Humains , Jeune adulte , Adulte , Reproductibilité des résultats , Spectroscopie par résonance magnétique/méthodes , Fantômes en imagerie , Structures macromoléculaires/métabolisme , Encéphale/métabolisme
12.
Magn Reson Med ; 91(2): 431-442, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-37876339

RÉSUMÉ

PURPOSE: To compare the respective ability of PRESS and sLASER to reveal biological relationships, using age as a validation covariate at 3 T. METHODS: MRS data were acquired from 102 healthy volunteers using PRESS and sLASER in centrum semiovale and posterior cingulate cortex (PCC). Acquisition parameters included TR/TE = 2000/30 ms, 96 transients, and 2048 datapoints sampled at 2 kHz. Spectra were analyzed using Osprey. SNR, FWHM linewidth of total creatine, and metabolite concentrations were extracted. A linear model was used to compare SNR and linewidth. Paired t-tests were used to assess differences in metabolite measurements between PRESS and sLASER. Correlations were used to evaluate the relationship between PRESS and sLASER metabolite estimates, as well as the strength of each metabolite-age relationship. Coefficients of variation were calculated to assess inter-subject variability in each metabolite measurement. RESULTS: SNR and linewidth were significantly higher (p < 0.01) for sLASER than PRESS in PCC. Paired t-tests showed significant differences between PRESS and sLASER in most metabolite measurements. PRESS-sLASER measurements were significantly correlated (p < 0.05) for most metabolites. Metabolite-age relationships were consistently identified using both methods. Similar coefficients of variation were observed for most metabolites. CONCLUSION: The study results suggest strong agreement between PRESS and sLASER in identifying relationships between brain metabolites and age in centrum semiovale and PCC data acquired at 3 T. sLASER is technically desirable due to the reduced chemical shift displacement artifact; however, PRESS performed similarly in homogeneous brain regions at clinical field strength.


Sujet(s)
Encéphale , Corps calleux , Humains , Spectroscopie par résonance magnétique/méthodes , Encéphale/imagerie diagnostique , Encéphale/métabolisme , Créatine/métabolisme , Modèles linéaires
13.
bioRxiv ; 2023 Sep 29.
Article de Anglais | MEDLINE | ID: mdl-37808813

RÉSUMÉ

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Altered neurometabolite levels, including glutathione (GSH) and gamma-aminobutyric acid (GABA), have been proposed as potential contributors to the biology underlying ASD. This study investigated whether cerebral GSH or GABA levels differ between a large cohort of children aged 8-12 years with ASD (n=52) and typically developing children (TDC, n=49). A comprehensive analysis of GSH and GABA levels in multiple brain regions, including the primary motor cortex (SM1), thalamus (Thal), medial prefrontal cortex (mPFC), and supplementary motor area (SMA), was conducted using single-voxel HERMES MR spectroscopy at 3T. The results revealed no significant differences in cerebral GSH or GABA levels between the ASD and TDC groups across all examined regions. These findings suggest that the concentrations of GSH (an important antioxidant and neuromodulator) and GABA (a major inhibitory neurotransmitter) do not exhibit marked alterations in children with ASD compared to TDC. A statistically significant positive correlation was observed between GABA levels in the SM1 and Thal regions with ADHD inattention scores. No significant correlation was found between metabolite levels and hyper/impulsive scores of ADHD, measures of core ASD symptoms (ADOS-2, SRS-P) or adaptive behavior (ABAS-2). While both GSH and GABA have been implicated in various neurological disorders, the current study provides valuable insights into the specific context of ASD and highlights the need for further research to explore other neurochemical alterations that may contribute to the pathophysiology of this complex disorder.

14.
bioRxiv ; 2023 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-37645767

RÉSUMÉ

During aging, the brain is subject to greater oxidative stress (OS), which is thought to play a critical role in cognitive impairment. Glutathione (GSH), as a major antioxidant in the brain, can be used to combatting OS. However, how brain GSH levels vary with age and their associations with cognitive function remain unclear. In this study, we combined point-resolved spectroscopy and edited spectroscopy sequences to investigate GSH levels in the anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and occipital cortex (OC) of 276 healthy participants (166 females, age range 20-70 years) and examined their relationships with age and cognitive function. The results revealed decreased GSH levels with age in the PCC among all participants. Notably, the timecourse of GSH level changes in the PCC and ACC differed between males and females. Additionally, positive correlations were observed between GSH levels in the PCC and OC and visuospatial memory. Taken together, these findings enhance our understanding of the brain GSH timecourse during normal aging and associations with sex and memory, which is an essential first step for understanding the neurochemical underpinnings of OS-related diseases.

15.
bioRxiv ; 2023 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-37215030

RÉSUMÉ

Neural networks are potentially valuable for many of the challenges associated with MRS data. The purpose of this manuscript is to describe the AGNOSTIC dataset, which contains 259,200 synthetic 1H MRS examples for training and testing neural networks. AGNOSTIC was created using 270 basis sets that were simulated across 18 field strengths and 15 echo times. The synthetic examples were produced to resemble in vivo brain data with combinations of metabolite, macromolecule, residual water signals, and noise. To demonstrate the utility, we apply AGNOSTIC to train two Convolutional Neural Networks (CNNs) to address out-of-voxel (OOV) echoes. A Detection Network was trained to identify the point-wise presence of OOV echoes, providing proof of concept for real-time detection. A Prediction Network was trained to reconstruct OOV echoes, allowing subtraction during post-processing. Complex OOV signals were mixed into 85% of synthetic examples to train two separate CNNs for the detection and prediction of OOV signals. AGNOSTIC is available through Dryad and all Python 3 code is available through GitHub. The Detection network was shown to perform well, identifying 95% of OOV echoes. Traditional modeling of these detected OOV signals was evaluated and may prove to be an effective method during linear-combination modeling. The Prediction Network greatly reduces OOV echoes within FIDs and achieved a median log10 normed-MSE of -1.79, an improvement of almost two orders of magnitude.

16.
Int J Mol Sci ; 24(8)2023 Apr 21.
Article de Anglais | MEDLINE | ID: mdl-37108797

RÉSUMÉ

Agrobacterium-mediated transient expression (AMTE) has been widely used for high-throughput assays of gene function in diverse plant species. However, its application in monocots is still limited due to low expression efficiency. Here, by using histochemical staining and a quantitative fluorescence assay of ß-glucuronidase (GUS) gene expression, we investigated factors affecting the efficiency of AMTE on intact barley plants. We found prominent variation in GUS expression levels across diverse vectors commonly used for stable transformation and that the vector pCBEP produced the highest expression. Additionally, concurrent treatments of plants with one day of high humidity and two days of darkness following agro-infiltration also significantly increased GUS expression efficiency. We thus established an optimized method for efficient AMTE on barley and further demonstrated its efficiency on wheat and rice plants. We showed that this approach could produce enough proteins suitable for split-luciferase assays of protein-protein interactions on barley leaves. Moreover, we incorporated the AMTE protocol into the functional dissection of a complex biological process such as plant disease. Based on our previous research, we used the pCBEP vector to construct a full-length cDNA library of genes upregulated during the early stage of rice blast disease. A subsequent screen of the library by AMTE identified 15 candidate genes (out of ~2000 clones) promoting blast disease on barley plants. Four identified genes encode chloroplast-related proteins: OsNYC3, OsNUDX21, OsMRS2-9, and OsAk2. These genes were induced during rice blast disease; however, constitutive overexpression of these genes conferred enhanced disease susceptibility to Colletotrichum higginsianum in Arabidopsis. These observations highlight the power of the optimized AMTE approach on monocots as an effective tool for facilitating functional assays of genes mediating complex processes such as plant-microbe interactions.


Sujet(s)
Agrobacterium , Feuilles de plante , Agrobacterium/génétique , Feuilles de plante/génétique , Feuilles de plante/métabolisme , Végétaux génétiquement modifiés/génétique , Végétaux génétiquement modifiés/métabolisme , Glucuronidase/métabolisme , Transformation génétique , Régulation de l'expression des gènes végétaux
17.
bioRxiv ; 2023 Jan 20.
Article de Anglais | MEDLINE | ID: mdl-36711794

RÉSUMÉ

Purpose: To compare the respective ability of PRESS and sLASER to reveal biological relationships, using age as a validation covariate. Methods: MRS data were acquired from 102 healthy volunteers using PRESS and sLASER in centrum semiovale (CSO) and posterior cingulate cortex (PCC) regions. Acquisition parameters included TR/TE 2000/30 ms; 96 transients; 2048 datapoints sampled at 2 kHz.Spectra were analyzed using Osprey. Signal-to-noise ratio (SNR), full-width-half-maximum linewidth of tCr, and metabolite concentrations were extracted. A linear model was used to compare SNR and linewidth. Paired t-tests were used to assess differences in metabolite measurements between PRESS and sLASER. Correlations were used to evaluate the relationship between PRESS and sLASER metabolite estimates, as well as the strength of each metabolite-age relationship. Coefficients of variation were calculated to assess inter-subject variability in each metabolite measurement. Results: SNR and linewidth were significantly higher (p<0.05) for sLASER than PRESS. Paired t-tests showed significant differences between PRESS and sLASER in most metabolite measurements. Metabolite measures were significantly correlated (p<0.05) for most metabolites between the two methods except GABA, Gln and Lac in CSO and GSH, Lac and NAAG in PCC. Metabolite-age relationships were consistently identified using both PRESS and sLASER. Similar CVs were observed for most metabolites. Conclusion: The study results suggest strong agreement between PRESS and sLASER in identifying relationships between brain metabolites and age in CSO and PCC data acquired at 3T. sLASER is technically desirable due to the reduced chemical shift displacement artifact; however, PRESS performed similarly in 'good' brain regions at clinical field strength.

18.
bioRxiv ; 2023 Jan 21.
Article de Anglais | MEDLINE | ID: mdl-36712103

RÉSUMÉ

Literature values for within-subject test-retest reproducibility of gamma-aminobutyric acid (GABA), measured with edited magnetic resonance spectroscopy (MRS), vary widely. Reasons for this variation remain unclear. Here we tested whether sequence complexity (two-experiment MEGA-PRESS versus four-experiment HERMES), editing pulse duration (14 versus 20 ms), scanner frequency drift (interleaved water referencing (IWR) turned ON versus OFF), and linear combination modeling variations (three different co-edited macromolecule models and 0.55 versus 0.4 ppm spline baseline knot spacing) affected the within-subject coefficient of variation of GABA + macromolecules (GABA+). We collected edited MRS data from the dorsal anterior cingulate cortex from 20 participants (30.8 ± 9.5 years; 10 males). Test and retest scans were separated by removing the participant from the scanner for 5-10 minutes. Each acquisition consisted of two MEGA-PRESS and two HERMES sequences with editing pulse durations of 14 and 20 ms (referred to here as: MEGA-14, MEGA-20, HERMES-14, and HERMES-20; all TE = 80 ms, 224 averages). Reproducibility did not consistently differ for MEGA-PRESS compared with HERMES or for 14 compared with 20 ms editing pulses. A composite model of the 0.9 and 3 ppm macromolecules (particularly for HERMES) and sparser (0.55 compared with 0.4 ppm) spline baseline knot spacing yielded generally better test-retest reproducibility for GABA+. Replicating our prior results, linear combination modeling in Osprey compared with simple peak fitting in Gannet resulted in substantially better test-retest reproducibility. These results highlight the importance of model selection for edited MRS studies of GABA+, particularly for clinical studies which focus on individual patient differences in GABA+ or changes following an intervention.

19.
NMR Biomed ; 36(3): e4854, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36271899

RÉSUMÉ

Expert consensus recommends linear-combination modeling (LCM) of 1 H MR spectra with sequence-specific simulated metabolite basis function and experimentally derived macromolecular (MM) basis functions. Measured MM basis functions are usually derived from metabolite-nulled spectra averaged across a small cohort. The use of subject-specific instead of cohort-averaged measured MM basis functions has not been studied widely. Furthermore, measured MM basis functions are not widely available to non-expert users, who commonly rely on parameterized MM signals internally simulated by LCM software. To investigate the impact of the choice of MM modeling, this study, therefore, compares metabolite level estimates between different MM modeling strategies (cohort-mean measured; subject-specific measured; parameterized) in a lifespan cohort and characterizes its impact on metabolite-age associations. 100 conventional (TE = 30 ms) and metabolite-nulled (TI = 650 ms) PRESS datasets, acquired from the medial parietal lobe in a lifespan cohort (20-70 years of age), were analyzed in Osprey. Short-TE spectra were modeled in Osprey using six different strategies to consider the MM baseline. Fully tissue- and relaxation-corrected metabolite levels were compared between MM strategies. Model performance was evaluated by model residuals, the Akaike information criterion (AIC), and the impact on metabolite-age associations. The choice of MM strategy had a significant impact on the mean metabolite level estimates and no major impact on variance. Correlation analysis revealed moderate-to-strong agreement between different MM strategies (r > 0.6). The lowest relative model residuals and AIC values were found for the cohort-mean measured MM. Metabolite-age associations were consistently found for two major singlet signals (total creatine (tCr])and total choline (tCho)) for all MM strategies; however, findings for metabolites that are less distinguishable from the background signals associations depended on the MM strategy. A variance partition analysis indicated that up to 44% of the total variance was related to the choice of MM strategy. Additionally, the variance partition analysis reproduced the metabolite-age association for tCr and tCho found in the simpler correlation analysis. In summary, the inclusion of a single high signal-to-noise ratio MM basis function (cohort-mean) in the short-TE LCM leads to more lower model residuals and AIC values compared with MM strategies with more degrees of freedom (Gaussian parametrization) or subject-specific MM information. Integration of multiple LCM analyses into a single statistical model potentially allows to identify the robustness in the detection of underlying effects (e.g., metabolite vs. age), reduces algorithm-based bias, and estimates algorithm-related variance.


Sujet(s)
Encéphale , Choline , Humains , Encéphale/métabolisme , Études de faisabilité , Spectroscopie par résonance magnétique/méthodes , Rapport signal-bruit , Structures macromoléculaires/métabolisme , Choline/métabolisme , Récepteurs aux antigènes des cellules T/métabolisme
20.
NMR Biomed ; 36(2): e4839, 2023 02.
Article de Anglais | MEDLINE | ID: mdl-36196802

RÉSUMÉ

Out-of-voxel (OOV) signals are common spurious echo artifacts in MRS. These signals often manifest in the spectrum as very strong "ripples," which interfere with spectral quantification by overlapping with targeted metabolite resonances. Dephasing optimization through coherence order pathway selection (DOTCOPS) gradient schemes are algorithmically optimized to suppress all potential alternative coherence transfer pathways (CTPs), and should suppress unwanted OOV echoes. In addition, second-order shimming uses non-linear gradient fields to maximize field homogeneity inside the voxel, which unfortunately increases the diversity of local gradient fields outside of the voxel. Given that strong local spatial B0 gradients can refocus unintended CTPs, it is possible that OOVs are less prevalent when only linear first-order shimming is applied. Here we compare the size of unwanted OOV signals in Hadamard-edited (HERMES) data acquired with either a local gradient scheme (which we refer to here as "Shared") or DOTCOPS, and with first- or second-order shimming. We collected data from 15 healthy volunteers in two brain regions (voxel size 30 × 26 × 26 mm3 ) from which it is challenging to acquire MRS data: medial prefrontal cortex and left temporal cortex. Characteristic OOV echoes were seen in both GABA- and GSH-edited spectra for both brain regions, gradient schemes, and shimming approaches. A linear mixed-effect model revealed a statistically significant difference in the average residual based on the gradient scheme in both GABA- (p < 0.001) and GSH-edited (p < 0.001) spectra: that is, the DOTCOPS gradient scheme resulted in smaller OOV artifacts compared with the Shared scheme. There were no significant differences in OOV artifacts associated with shimming method. Thus, these results suggest that the DOTCOPS gradient scheme for J-difference-edited PRESS acquisitions yields spectra with smaller OOV echo artifacts than the Shared gradient scheme implemented in a widely disseminated editing sequence.


Sujet(s)
Artéfacts , Encéphale , Humains , Spectroscopie par résonance magnétique/méthodes , Encéphale/imagerie diagnostique , Encéphale/métabolisme , Tête , Acide gamma-amino-butyrique/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...