Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Endocrinology ; 165(8)2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-39024412

RÉSUMÉ

Osteocytes are embedded in lacunae and connected by canaliculi (lacuno-canalicular network, LCN). Bones from mice with X-linked hypophosphatemia (Hyp), which have impaired production of 1,25 dihydroxyvitamin D (1,25D) and hypophosphatemia, have abnormal LCN structure that is improved by treatment with 1,25D or an anti-FGF23 targeting antibody, supporting roles for 1,25D and phosphate in regulating LCN remodeling. Bones from mice lacking the vitamin D receptor (VDR) in osteocytes (Vdrf/f;Dmp1Cre+) and mice lacking the sodium phosphate transporter 2a (Npt2aKO), which have low serum phosphate with high serum 1,25D, have impaired LCN organization, demonstrating that osteocyte-specific actions of 1,25D and hypophosphatemia regulate LCN remodeling. In osteoclasts, nuclear factor of activated T cells cytoplasmic 1 (NFATc1) is critical for stimulating bone resorption. Since osteocytes also resorb matrix, we hypothesize that NFATc1 plays a role in 1,25D and phosphate-mediated LCN remodeling. Consistent with this, 1,25D and phosphate suppress Nfatc1 mRNA expression in IDG-SW3 osteocytes, and knockdown of Nfatc1 expression in IDG-SW3 cells blocks 1,25D- and phosphate-mediated suppression of matrix resorption gene expression and 1,25D- and phosphate-mediated suppression of RANKL-induced acidification of the osteocyte microenvironment. To determine the role of NFATc1 in 1,25D- and phosphate-mediated LCN remodeling in vivo, histomorphometric analyses of tibiae from mice lacking osteocyte-specific Nfatc1 in Vdrf/f;Dmp1Cre+ and Npt2aKO mice were performed, demonstrating that bones from these mice have decreased lacunar size and expression of matrix resorption genes, and improved canalicular structure compared to Vdrf/f;Dmp1Cre+ and Npt2aKO control. This study demonstrates that NFATc1 is necessary for 1,25D- and phosphate-mediated regulation of LCN remodeling.


Sujet(s)
Remodelage osseux , Facteur-23 de croissance des fibroblastes , Facteurs de transcription NFATC , Ostéocytes , Phosphates , Vitamine D , Animaux , Mâle , Souris , Remodelage osseux/effets des médicaments et des substances chimiques , Rachitisme hypophosphatémique familial/métabolisme , Rachitisme hypophosphatémique familial/génétique , Souris de lignée C57BL , Souris knockout , Facteurs de transcription NFATC/métabolisme , Facteurs de transcription NFATC/génétique , Ostéocytes/métabolisme , Ostéocytes/effets des médicaments et des substances chimiques , Phosphates/métabolisme , Récepteur calcitriol/métabolisme , Récepteur calcitriol/génétique , Cotransporteurs sodium-phosphate de type IIa/génétique , Cotransporteurs sodium-phosphate de type IIa/métabolisme , Vitamine D/pharmacologie , Vitamine D/analogues et dérivés , Femelle
2.
J Bone Miner Res ; 39(8): 1162-1173, 2024 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-38836497

RÉSUMÉ

X-linked hypophosphatemia (XLH) is caused by mutations in PHEX, leading to rickets and osteomalacia. Adults affected with XLH develop a mineralization of the bone-tendon attachment site (enthesis), called enthesopathy, which causes significant pain and impaired movement. Entheses in mice with XLH (Hyp) have enhanced bone morphogenetic protein (BMP) and Indian hedgehog (IHH) signaling. Treatment of Hyp mice with the BMP signaling blocker palovarotene attenuated BMP/IHH signaling in Hyp entheses, thus indicating that BMP signaling plays a pathogenic role in enthesopathy development and that IHH signaling is activated by BMP signaling in entheses. It was previously shown that mRNA expression of growth/differentiation factor 5 (Gdf5) is enhanced in Hyp entheses at P14. Thus, to determine a role for GDF5 in enthesopathy development, Gdf5 was deleted globally in Hyp mice and conditionally in Scx + cells of Hyp mice. In both murine models, BMP/IHH signaling was similarly decreased in Hyp entheses, leading to decreased enthesopathy. BMP/IHH signaling remained unaffected in WT entheses with decreased Gdf5 expression. Moreover, deletion of Gdf5 in Hyp entheses starting at P30, after enthesopathy has developed, partially reversed enthesopathy. Taken together, these results demonstrate that while GDF5 is not essential for modulating BMP/IHH signaling in WT entheses, inappropriate GDF5 activity in Scx + cells contributes to XLH enthesopathy development. As such, inhibition of GDF5 signaling may be beneficial for the treatment of XLH enthesopathy.


X-linked hypophosphatemia (XLH) is a rare bone disorder that leads to short stature and poorly mineralized bones. As adults, patients with XLH often develop a mineralization of the bone-tendon attachment site, called enthesopathy, which results in significant pain. We previously showed that Achilles bone-tendon attachment sites (entheses) in mice with XLH (Hyp) have an enthesopathy characterized by increased bone morphogenetic protein (BMP) signaling. In the current studies, we show that treating Hyp mice with the BMP signaling inhibitor palovarotene prevents enthesopathy, demonstrating that the increased BMP signaling in Hyp entheses leads to enthesopathy development. We also reported that gene expression of Gdf5, which activates BMP signaling, is enhanced in Hyp entheses. Therefore, to determine if the enhanced Gdf5 expression leads to the increased BMP signaling seen Hyp entheses, Gdf5 was deleted from Hyp mice and also deleted specifically in the entheses of Hyp mice. In both mouse models, enthesopathy development was attenuated, demonstrating that the increased Gdf5 expression in Hyp entheses plays a role in enthesopathy development. These data indicate that blocking GDF5 and BMP signaling may prevent enthesopathy in patients with XLH.


Sujet(s)
Enthésopathie , Rachitisme hypophosphatémique familial , Facteur-5 de croissance et de différenciation , Animaux , Souris , Protéines morphogénétiques osseuses/métabolisme , Modèles animaux de maladie humaine , Enthésopathie/génétique , Enthésopathie/métabolisme , Enthésopathie/anatomopathologie , Rachitisme hypophosphatémique familial/génétique , Rachitisme hypophosphatémique familial/métabolisme , Rachitisme hypophosphatémique familial/anatomopathologie , Facteur-5 de croissance et de différenciation/métabolisme , Facteur-5 de croissance et de différenciation/génétique , Transduction du signal
3.
JCI Insight ; 8(17)2023 09 08.
Article de Anglais | MEDLINE | ID: mdl-37490334

RÉSUMÉ

X-linked hypophosphatemia (XLH) is characterized by high serum fibroblast growth factor 23 (FGF23) levels, resulting in impaired 1,25-dihydroxyvitamin D3 (1,25D) production. Adults with XLH develop a painful mineralization of the tendon-bone attachment site (enthesis), called enthesopathy. Treatment of mice with XLH (Hyp) with 1,25D or an anti-FGF23 Ab, both of which increase 1,25D signaling, prevents enthesopathy. Therefore, we undertook studies to determine a role for impaired 1,25D action in enthesopathy development. Entheses from mice lacking vitamin D 1α-hydroxylase (Cyp27b1) (C-/-) had a similar enthesopathy to Hyp mice, whereas deletion of Fgf23 in Hyp mice prevented enthesopathy, and deletion of both Cyp27b1 and Fgf23 in mice resulted in enthesopathy, demonstrating that the impaired 1,25D action due to high FGF23 levels underlies XLH enthesopathy development. Like Hyp mice, enthesopathy in C-/- mice was observed by P14 and was prevented, but not reversed, with 1,25D therapy. Deletion of the vitamin D receptor in scleraxis-expressing cells resulted in enthesopathy, indicating that 1,25D acted directly on enthesis cells to regulate enthesopathy development. These results show that 1,25D signaling was necessary for normal postnatal enthesis maturation and played a role in XLH enthesopathy development. Optimizing 1,25D replacement in pediatric patients with XLH is necessary to prevent enthesopathy.


Sujet(s)
Enthésopathie , Rachitisme hypophosphatémique familial , Souris , Animaux , Rachitisme hypophosphatémique familial/génétique , Calcitriol , 25-Hydroxyvitamine D3 1-alpha-hydroxylase , Facteurs de croissance fibroblastique , Vitamine D
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE