Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nat Commun ; 12(1): 6541, 2021 Nov 11.
Article de Anglais | MEDLINE | ID: mdl-34764266

RÉSUMÉ

The quanta of magnetic excitations - magnons - are known for their unique ability to undergo Bose-Einstein condensation at room temperature. This fascinating phenomenon reveals itself as a spontaneous formation of a coherent state under the influence of incoherent stimuli. Spin currents have been predicted to offer electronic control of Bose-Einstein condensates, but this phenomenon has not been experimentally evidenced up to now. Here we show that current-driven Bose-Einstein condensation can be achieved in nanometer-thick films of magnetic insulators with tailored nonlinearities and minimized magnon interactions. We demonstrate that, above a certain threshold, magnons injected by the spin current overpopulate the lowest-energy level forming a highly coherent spatially extended state. We quantify the chemical potential of the driven magnon gas and show that, at the critical current, it reaches the energy of the lowest magnon level. Our results pave the way for implementation of integrated microscopic quantum magnonic and spintronic devices.

2.
Phys Rev Lett ; 127(7): 077202, 2021 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-34459640

RÉSUMÉ

We investigate the role of domain walls in the ultrafast magnon dynamics of an antiferromagnetic NiO single crystal in a pump-probe experiment with variable pump photon energy. Analyzing the amplitude of the energy-dependent photoinduced ultrafast spin dynamics, we detect a yet unreported coupling between the material's characteristic terahertz- and gigahertz-magnon modes. We explain this unexpected coupling between two orthogonal eigenstates of the corresponding Hamiltonian by modeling the magnetoelastic interaction between spins in different domains. We find that such interaction, in the nonlinear regime, couples the two different magnon modes via the domain walls and it can be optically exploited via the exciton-magnon resonance.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...