Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Sujet principal
Gamme d'année
1.
bioRxiv ; 2024 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-39185229

RÉSUMÉ

Mice offer a wealth of opportunities for investigating brain circuits regulating multiple behaviors, largely due to their genetic tractability. Social behaviors are of translational relevance, considering both mice and humans are highly social mammals, and disruptions in human social behavior are key symptoms of myriad neuropsychiatric disorders. Stresses related to social experiences are particularly influential in the severity and maintenance of neuropsychiatric disorders like anxiety disorders, and trauma and stressor-related disorders. Yet, induction and study of social stress in mice is disproportionately focused on males, influenced heavily by their natural territorial nature. Conspecific-elicited stress (i.e., defeat), while ethologically relevant, is quite variable and predominantly specific to males, making rigorous and sex-inclusive studies challenging. In pursuit of a controllable, consistent, high throughput, and sex-inclusive paradigm for eliciting social stress, we have discovered intriguing sex-specific social aversions that are dependent upon the sex of both experimental and conspecific mice. Specifically, we trained male and female F1 129S1/SvlmJ × C57BL/6J mice to associate (via classical conditioning) same or different sex C57BL/6J conspecifics with a mild, aversive stimulus. Upon subsequent testing for social interaction 24 h later, we found that males socially conditioned better to male conspecifics by exhibiting reduced social interaction, whereas females socially conditioned better to male conspecifics. Serum corticosterone levels inversely corresponded to social avoidance after different sex, but not same sex, conditioning, suggesting corticosterone-mediated arousal could influence cross sex interactions. While our paradigm has further optimization ahead, these current findings reveal why past pursuits to develop same sex female social stress paradigms may have met with limited success. Future research should expand investigation of utilizing male mouse conspecifics to instigate social stress across sexes.

2.
Int J Mol Sci ; 24(22)2023 Nov 18.
Article de Anglais | MEDLINE | ID: mdl-38003684

RÉSUMÉ

Certain life stressors having enduring physiological and behavioral consequences, in part by eliciting dramatic signaling shifts in monoamine neurotransmitters. High monoamine levels can overwhelm selective transporters like the serotonin transporter. This is when polyspecific transporters like plasma membrane monoamine transporter (PMAT, Slc29a4) are hypothesized to contribute most to monoaminergic signaling regulation. Here, we employed two distinct counterbalanced stressors-fear conditioning and swim stress-in mice to systematically determine how reductions in PMAT function affect heterotypic stressor responsivity. We hypothesized that male heterozygotes would exhibit augmented stressor responses relative to female heterozygotes. Decreased PMAT function enhanced context fear expression, an effect unexpectedly obscured by a sham stress condition. Impaired cued fear extinction retention and enhanced context fear expression in males were conversely unmasked by a sham swim condition. Abrogated corticosterone levels in male heterozygotes that underwent swim stress after context fear conditioning did not map onto any measured behaviors. In sum, male heterozygous mouse fear behaviors proved malleable in response to preceding stressor or sham stress exposure. Combined, these data indicate that reduced male PMAT function elicits a form of stress-responsive plasticity. Future studies should assess how PMAT is differentially affected across sexes and identify downstream consequences of the stress-shifted corticosterone dynamics.


Sujet(s)
Peur , Animaux , Femelle , Mâle , Souris , Corticostérone/analyse , Extinction (psychologie) , Protéines de transport membranaire , Transduction du signal
3.
bioRxiv ; 2023 Nov 13.
Article de Anglais | MEDLINE | ID: mdl-37693400

RÉSUMÉ

Certain life stressors having enduring physiological and behavioral consequences, in part by eliciting dramatic signaling shifts in monoamine neurotransmitters. High monoamine levels can overwhelm selective transporters like the serotonin transporter. This is when polyspecific transporters like plasma membrane monoamine transporter (PMAT, Slc29a4) are hypothesized to contribute most to monoaminergic signaling regulation. Here, we employed two distinct counterbalanced stressors - fear conditioning, and swim stress - in mice to systematically determine how reductions in PMAT function affect heterotypic stressor responsivity. We hypothesized male heterozygotes would exhibit augmented stressor responses relative to female heterozygotes. Decreased PMAT function enhanced context fear expression, an effect unexpectedly obscured by a sham stress condition. Impaired cued fear extinction retention and enhanced context fear expression in males were conversely unmasked by a sham swim condition. Abrogated corticosterone levels in male heterozygotes that underwent swim stress after context fear conditioning did not map on to any measured behaviors. In sum, male heterozygous mouse fear behaviors proved malleable in response to preceding stressor or sham stress exposure. Combined, these data indicate reduced male PMAT function elicits a form of stress-responsive plasticity. Future studies should assess how PMAT is differentially affected across sexes and identify downstream consequences of the stress-shifted corticosterone dynamics.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE