Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Res Sq ; 2023 Oct 12.
Article de Anglais | MEDLINE | ID: mdl-37886553

RÉSUMÉ

Men of African descent have the highest prostate cancer (CaP) incidence and mortality rates, yet the genetic basis of CaP in African men has been understudied. We used genomic data from 3,963 CaP cases and 3,509 controls recruited in Ghana, Nigeria, Senegal, South Africa, and Uganda, to infer ancestry-specific genetic architectures and fine-mapped disease associations. Fifteen independent associations at 8q24.21, 6q22.1, and 11q13.3 reached genome-wide significance, including four novel associations. Intriguingly, multiple lead SNPs are private alleles, a pattern arising from recent mutations and the out-of-Africa bottleneck. These African-specific alleles contribute to haplotypes with odds ratios above 2.4. We found that the genetic architecture of CaP differs across Africa, with effect size differences contributing more to this heterogeneity than allele frequency differences. Population genetic analyses reveal that African CaP associations are largely governed by neutral evolution. Collectively, our findings emphasize the utility of conducting genetic studies that use diverse populations.

2.
Genome Biol ; 23(1): 194, 2022 09 13.
Article de Anglais | MEDLINE | ID: mdl-36100952

RÉSUMÉ

BACKGROUND: Genome-wide association studies do not always replicate well across populations, limiting the generalizability of polygenic risk scores (PRS). Despite higher incidence and mortality rates of prostate cancer in men of African descent, much of what is known about cancer genetics comes from populations of European descent. To understand how well genetic predictions perform in different populations, we evaluated test characteristics of PRS from three previous studies using data from the UK Biobank and a novel dataset of 1298 prostate cancer cases and 1333 controls from Ghana, Nigeria, Senegal, and South Africa. RESULTS: Allele frequency differences cause predicted risks of prostate cancer to vary across populations. However, natural selection is not the primary driver of these differences. Comparing continental datasets, we find that polygenic predictions of case vs. control status are more effective for European individuals (AUC 0.608-0.707, OR 2.37-5.71) than for African individuals (AUC 0.502-0.585, OR 0.95-2.01). Furthermore, PRS that leverage information from African Americans yield modest AUC and odds ratio improvements for sub-Saharan African individuals. These improvements were larger for West Africans than for South Africans. Finally, we find that existing PRS are largely unable to predict whether African individuals develop aggressive forms of prostate cancer, as specified by higher tumor stages or Gleason scores. CONCLUSIONS: Genetic predictions of prostate cancer perform poorly if the study sample does not match the ancestry of the original GWAS. PRS built from European GWAS may be inadequate for application in non-European populations and perpetuate existing health disparities.


Sujet(s)
Étude d'association pangénomique , Tumeurs de la prostate , Afrique subsaharienne/épidémiologie , Prédisposition génétique à une maladie , Humains , Mâle , Tumeurs de la prostate/génétique , Facteurs de risque
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...