Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Sci Rep ; 9(1): 4447, 2019 03 14.
Article de Anglais | MEDLINE | ID: mdl-30872603

RÉSUMÉ

Glacial runoff is predicted to increase in many parts of the Arctic with climate change, yet little is known about the biogeochemical impacts of meltwaters on downstream freshwater ecosystems. Here we document the contemporary limnology of the rapidly changing glacierized watershed of the world's largest High Arctic lake (Lake Hazen), where warming since 2007 has increased delivery of glacial meltwaters to the lake by up to 10-times. Annually, glacial meltwaters accounted for 62-98% of dissolved nutrient inputs to the lake, depending on the chemical species and year. Lake Hazen was a strong sink for NO3--NO2-, NH4+ and DOC, but a source of DIC to its outflow the Ruggles River. Most nutrients entering Lake Hazen were, however, particle-bound and directly transported well below the photic zone via dense turbidity currents, thus reinforcing ultraoligotrophy in the lake rather than overcoming it. For the first time, we apply the land-to-ocean aquatic continuum framework in a large glacierized Arctic watershed, and provide a detailed and holistic description of the physical, chemical and biological limnology of the rapidly changing Lake Hazen watershed. Our findings highlight the sensitivity of freshwater ecosystems to the changing cryosphere, with implications for future water quality and productivity at high latitudes.

2.
Environ Sci Technol ; 53(3): 1175-1185, 2019 02 05.
Article de Anglais | MEDLINE | ID: mdl-30596413

RÉSUMÉ

Across the Arctic, glaciers are melting and permafrost is thawing at unprecedented rates, releasing not only water to downstream aquatic systems, but also contaminants like mercury, archived in ice over centuries. Using concentrations from samples collected over 4 years and calibrated modeled hydrology, we calculated methylmercury (MeHg) and total mercury (THg) mass balances for Lake Hazen, the world's largest High Arctic lake by volume, for 2015 and 2016. Glacial rivers were the most important source of MeHg and THg to Lake Hazen, accounting for up to 53% and 94% of the inputs, respectively. However, due to the MeHg and THg being primarily particle-bound, Lake Hazen was an annual MeHg and THg sink. Exports of MeHg and THg out the Ruggles River outflow were consequently very low, but erosion and permafrost slumping downstream of the lake increased river MeHg and THg concentrations significantly before entering coastal waters in Chandler Fjord. Since 2001, glacial MeHg and THg inputs to Lake Hazen have increased by 0.01 and 0.400 kg yr-1, respectively, in step with dramatic increases in glacial melt. This study highlights the potential for increases in mercury inputs to arctic ecosystems downstream of glaciers despite recent reductions in global mercury emissions.


Sujet(s)
Mercure , Composés méthylés du mercure , Polluants chimiques de l'eau , Régions arctiques , Canada , Écosystème , Surveillance de l'environnement , Lacs , Nunavut
3.
Environ Sci Technol ; 49(10): 5930-8, 2015 May 19.
Article de Anglais | MEDLINE | ID: mdl-25876438

RÉSUMÉ

Caribou, which rely on lichens as forage, are a dietary source of monomethylmercury (MMHg) to many of Canada's Arctic Aboriginal people. However, little is understood about the sources of MMHg to lichens in the High Arctic. We quantified MMHg, total mercury (THg) and other chemical parameters (e.g., marine and crustal elements, δ(13)C, δ(15)N, organic carbon, calcium carbonate) in lichen and soil samples collected along transects extending from the coast on Bathurst and Devon islands, Nunavut, to determine factors driving lichen MMHg and THg concentrations in the High Arctic. Lichen MMHg and THg concentrations ranged from 1.41 to 17.1 ng g(-1) and from 36.0 to 361 ng g(-1), respectively. Both were highly enriched over concentrations in underlying soils, indicating a predominately atmospheric source of Hg in lichens. However, MMHg and THg enrichment at coastal sites on Bathurst Island was far greater than on Devon Island. We suggest that this variability can be explained by the proximity of the Bathurst Island transect to several polynyas, which promote enhanced Hg deposition to adjacent landscapes through various biogeochemical processes. This study is the first to clearly show a strong marine influence on MMHg inputs to coastal terrestrial food webs with implications for MMHg accumulation in caribou and the health of the people who depend on them as part of a traditional diet.


Sujet(s)
Surveillance de l'environnement , Lichens/composition chimique , Mercure/analyse , Eau de mer/composition chimique , Polluants chimiques de l'eau/analyse , Régions arctiques , Iles , Composés méthylés du mercure/analyse , Nunavut , Analyse en composantes principales , Sol/composition chimique
4.
Environ Sci Technol ; 48(5): 2680-7, 2014.
Article de Anglais | MEDLINE | ID: mdl-24555761

RÉSUMÉ

Monomethylmercury (MMHg) is a neurotoxin of concern in the Canadian Arctic due to its tendency to bioaccumulate and the importance of fish and wildlife in the Inuit diet. In lakes and wetlands, microbial sediment communities are integral to the cycling of MMHg; however, the role of Arctic marine sediments is poorly understood. With projected warming, the effect of temperature on the production and degradation of MMHg in Arctic environments also remains unclear. We examined MMHg dynamics across a temperature gradient (4, 12, 24 °C) in marine sediments collected in Allen Bay, Nunavut. Slurries were spiked with stable mercury isotopes and amended with specific microbial stimulants and inhibitors, and subsampled over 12 days. Maximal methylation and demethylation potentials were low, ranging from below detection to 1.13 pmol g(-1) h(-1) and 0.02 pmol g(-1) h(-1), respectively, suggesting that sediments are likely not an important source of MMHg to overlying water. Our results suggest that warming may result in an increase in Hg methylation - controlled by temperature-dependent sulfate reduction, without a compensatory increase in demethylation. This study highlights the need for further research into the role of high Arctic marine sediments and climate on the Arctic marine MMHg budget.


Sujet(s)
Bactéries/métabolisme , Sédiments géologiques/composition chimique , Composés méthylés du mercure/métabolisme , Soufre/métabolisme , Température , Polluants chimiques de l'eau/métabolisme , Régions arctiques , Surveillance de l'environnement , Sédiments géologiques/analyse , Méthylation , Nunavut , Eau de mer/analyse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...