Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
2.
Naturwissenschaften ; 108(5): 43, 2021 Sep 07.
Article de Anglais | MEDLINE | ID: mdl-34491425

RÉSUMÉ

Diminishing prospects for environmental preservation under climate change are intensifying efforts to boost capture, storage and sequestration (long-term burial) of carbon. However, as Earth's biological carbon sinks also shrink, remediation has become a key part of the narrative for terrestrial ecosystems. In contrast, blue carbon on polar continental shelves have stronger pathways to sequestration and have increased with climate-forced marine ice losses-becoming the largest known natural negative feedback on climate change. Here we explore the size and complex dynamics of blue carbon gains with spatiotemporal changes in sea ice (60-100 MtCyear-1), ice shelves (4-40 MtCyear-1 = giant iceberg generation) and glacier retreat (< 1 MtCyear-1). Estimates suggest that, amongst these, reduced duration of seasonal sea ice is most important. Decreasing sea ice extent drives longer (not necessarily larger biomass) smaller cell-sized phytoplankton blooms, increasing growth of many primary consumers and benthic carbon storage-where sequestration chances are maximal. However, sea ice losses also create positive feedbacks in shallow waters through increased iceberg movement and scouring of benthos. Unlike loss of sea ice, which enhances existing sinks, ice shelf losses generate brand new carbon sinks both where giant icebergs were, and in their wake. These also generate small positive feedbacks from scouring, minimised by repeat scouring at biodiversity hotspots. Blue carbon change from glacier retreat has been least well quantified, and although emerging fjords are small areas, they have high storage-sequestration conversion efficiencies, whilst blue carbon in polar waters faces many diverse and complex stressors. The identity of these are known (e.g. fishing, warming, ocean acidification, non-indigenous species and plastic pollution) but not their magnitude of impact. In order to mediate multiple stressors, research should focus on wider verification of blue carbon gains, projecting future change, and the broader environmental and economic benefits to safeguard blue carbon ecosystems through law.


Sujet(s)
Changement climatique , Couche de glace , Régions antarctiques , Carbone , Écosystème , Rétroaction , Concentration en ions d'hydrogène , Eau de mer
3.
Sci Rep ; 8(1): 2816, 2018 02 12.
Article de Anglais | MEDLINE | ID: mdl-29434330

RÉSUMÉ

Free-ocean CO2 enrichment (FOCE) experiments have been deployed in marine ecosystems to manipulate carbonate system conditions to those predicted in future oceans. We investigated whether the pH/carbonate chemistry of extremely cold polar waters can be manipulated in an ecologically relevant way, to represent conditions under future atmospheric CO2 levels, in an in-situ FOCE experiment in Antarctica. We examined spatial and temporal variation in local ambient carbonate chemistry at hourly intervals at two sites between December and February and compared these with experimental conditions. We successfully maintained a mean pH offset in acidified benthic chambers of -0.38 (±0.07) from ambient for approximately 8 weeks. Local diel and seasonal fluctuations in ambient pH were duplicated in the FOCE system. Large temporal variability in acidified chambers resulted from system stoppages. The mean pH, Ωarag and fCO2 values in the acidified chambers were 7.688 ± 0.079, 0.62 ± 0.13 and 912 ± 150 µatm, respectively. Variation in ambient pH appeared to be mainly driven by salinity and biological production and ranged from 8.019 to 8.192 with significant spatio-temporal variation. This experiment demonstrates the utility of FOCE systems to create conditions expected in future oceans that represent ecologically relevant variation, even under polar conditions.

4.
Mar Pollut Bull ; 90(1-2): 33-40, 2015 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-25499184

RÉSUMÉ

Although considered pristine, Antarctica has not been impervious to hydrocarbon pollution. Antarctica's history is peppered with oil spills and numerous abandoned waste disposal sites. Both spill events and constant leakages contribute to previous and current sources of pollution into marine sediments. Here we compare the response of the benthic diatom communities over 5 years to exposure to a commonly used standard synthetic lubricant oil, an alternative lubricant marketed as more biodegradable, in comparison to a control treatment. Community composition varied significantly over time and between treatments with some high variability within contaminated treatments suggesting community stress. Both lubricants showed evidence of significant effects on community composition after 5 years even though total petroleum hydrocarbon reduction reached approximately 80% over this time period. It appears that even after 5 years toxicity remains high for both the standard and biodegradable lubricants revealing the temporal scale at which pollutants persist in Antarctica.


Sujet(s)
Diatomées/effets des médicaments et des substances chimiques , Pollution pétrolière , Pétrole/toxicité , Polluants chimiques de l'eau/toxicité , Régions antarctiques , Surveillance de l'environnement , Sédiments géologiques/composition chimique , Hydrocarbures , Polluants chimiques de l'eau/analyse
5.
Sci Total Environ ; 410-411: 205-16, 2011 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-22018965

RÉSUMÉ

Diesels and lubricants used at research stations can persist in terrestrial and marine sediments for decades, but knowledge of their effects on the surrounding environments is limited. In a 5 year in situ investigation, marine sediment spiked with Special Antarctic Blend (SAB) diesel was placed on the seabed of O'Brien Bay near Casey Station, Antarctica and sampled after 5, 56, 65, 104 and 260 weeks. The rates and possible mechanisms of removal of the diesel from the marine sediments are presented here. The hydrocarbons within the spiked sediment were removed at an overall rate of 4.7mg total petroleum hydrocarbons kg(-1) sediment week(-1), or 245mgkg(-1)year(-1), although seasonal variation was evident. The concentration of total petroleum hydrocarbons fell markedly from 2020±340mgkg(-1) to 800±190mgkg(-1), but after 5 years the spiked sediment was still contaminated relative to natural organic matter (160±170mgkg(-1)). Specific compounds in SAB diesel preferentially decreased in concentration, but not as would be expected if biodegradation was the sole mechanism responsible. Naphthalene was removed more readily than n-alkanes, suggesting that aqueous dissolution played a major role in the reduction of SAB diesel. 1,3,5,7-Teramethyladamantane and 1,3-dimethyladamantane were the most recalcitrant isomers in the spiked marine sediment. Dissolution of aromatic compounds from marine sediment increases the availability of more soluble, aromatic compounds in the water column. This could increase the area of contamination and potentially broaden the region impacted by ecotoxicological effects from shallow sediment dwelling fauna, as noted during biodegradation, to shallow (<19m) water dwelling fauna.


Sujet(s)
Essence/analyse , Sédiments géologiques/composition chimique , Hydrocarbures/métabolisme , Polluants chimiques de l'eau/métabolisme , Régions antarctiques , Dépollution biologique de l'environnement , Surveillance de l'environnement , Ionisation de flamme
6.
Mar Pollut Bull ; 60(9): 1541-9, 2010 Sep.
Article de Anglais | MEDLINE | ID: mdl-20488497

RÉSUMÉ

Sediment profiles for pH, Eh, 28 elements, water and organic content are presented here for human impacted and reference locations in the Windmill Islands, East Antarctica. Variations in element concentrations are observed with increasing depth, especially at Brown Bay where the impact of past human activities is most pronounced in the top 10 cm. Spatial differences were observed between sediment profiles at reference and impacted locations and were largely explained by Pb variability in the top 5 cm. Median element concentrations from surface, middle and bottom regions of the sediment profile were compared to composite sample medians (no depth stratigraphy) for 11 elements at O'Brien Bay (reference) and Brown Bay (impacted). Pronounced differences were observed for Brown Bay, particularly surface and middle sections, implying that composite samples dilute the near surface anthropogenic signal by mixing with deeper uncontaminated sediment.


Sujet(s)
Surveillance de l'environnement , Sédiments géologiques/analyse , Régions antarctiques , Éléments , Géographie , Valeurs de référence , Saisons
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE