Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Sci Adv ; 10(14): eadk3674, 2024 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-38569027

RÉSUMÉ

The immune system substantially influences age-related cognitive decline and Alzheimer's disease (AD) progression, affected by genetic and environmental factors. In a Mayo Clinic Study of Aging cohort, we examined how risk factors like APOE genotype, age, and sex affect inflammatory molecules and AD biomarkers in cerebrospinal fluid (CSF). Among cognitively unimpaired individuals over 65 (N = 298), we measured 365 CSF inflammatory molecules, finding age, sex, and diabetes status predominantly influencing their levels. We observed age-related correlations with AD biomarkers such as total tau, phosphorylated tau-181, neurofilament light chain (NfL), and YKL40. APOE4 was associated with lower Aß42 and higher SNAP25 in CSF. We explored baseline variables predicting cognitive decline risk, finding age, CSF Aß42, NfL, and REG4 to be independently correlated. Subjects with older age, lower Aß42, higher NfL, and higher REG4 at baseline had increased cognitive impairment risk during follow-up. This suggests that assessing CSF inflammatory molecules and AD biomarkers could predict cognitive impairment risk in the elderly.


Sujet(s)
Maladie d'Alzheimer , Dysfonctionnement cognitif , Humains , Sujet âgé , Maladie d'Alzheimer/diagnostic , Maladie d'Alzheimer/étiologie , Maladie d'Alzheimer/liquide cérébrospinal , Dysfonctionnement cognitif/diagnostic , Dysfonctionnement cognitif/étiologie , Protéines tau , Marqueurs biologiques , Peptides bêta-amyloïdes , Fragments peptidiques
2.
Mol Psychiatry ; 29(3): 809-819, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38135757

RÉSUMÉ

ABCA7 loss-of-function variants are associated with increased risk of Alzheimer's disease (AD). Using ABCA7 knockout human iPSC models generated with CRISPR/Cas9, we investigated the impacts of ABCA7 deficiency on neuronal metabolism and function. Lipidomics revealed that mitochondria-related phospholipids, such as phosphatidylglycerol and cardiolipin were reduced in the ABCA7-deficient iPSC-derived cortical organoids. Consistently, ABCA7 deficiency-induced alterations of mitochondrial morphology accompanied by reduced ATP synthase activity and exacerbated oxidative damage in the organoids. Furthermore, ABCA7-deficient iPSC-derived neurons showed compromised mitochondrial respiration and excess ROS generation, as well as enlarged mitochondrial morphology compared to the isogenic controls. ABCA7 deficiency also decreased spontaneous synaptic firing and network formation in iPSC-derived neurons, in which the effects were rescued by supplementation with phosphatidylglycerol or NAD+ precursor, nicotinamide mononucleotide. Importantly, effects of ABCA7 deficiency on mitochondria morphology and synapses were recapitulated in synaptosomes isolated from the brain of neuron-specific Abca7 knockout mice. Together, our results provide evidence that ABCA7 loss-of-function contributes to AD risk by modulating mitochondria lipid metabolism.


Sujet(s)
Transporteurs ABC , Cellules souches pluripotentes induites , Métabolisme lipidique , Souris knockout , Mitochondries , Neurones , Mitochondries/métabolisme , Neurones/métabolisme , Humains , Animaux , Métabolisme lipidique/physiologie , Souris , Cellules souches pluripotentes induites/métabolisme , Transporteurs ABC/métabolisme , Transporteurs ABC/génétique , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/anatomopathologie , Maladie d'Alzheimer/génétique , Encéphale/métabolisme
3.
JCI Insight ; 8(7)2023 04 10.
Article de Anglais | MEDLINE | ID: mdl-37036005

RÉSUMÉ

Cerebrovasculature is critical in maintaining brain homeostasis; its dysregulation often leads to vascular cognitive impairment and dementia (VCID) during aging. VCID is the second most prevalent cause of dementia in the elderly, after Alzheimer's disease (AD), with frequent cooccurrence of VCID and AD. While multiple factors are involved in the pathogenesis of AD and VCID, APOE4 increases the risk for both diseases. A major apolipoprotein E (apoE) receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in vascular mural cells (pericytes and smooth muscle cells). Here, we investigated how deficiency of vascular mural cell LRP1 affects the cerebrovascular system and cognitive performance using vascular mural cell-specific Lrp1-KO mice (smLrp1-/-) in a human APOE3 or APOE4 background. We found that spatial memory was impaired in the 13- to 16-month-old APOE4 smLrp1-/- mice but not in the APOE3 smLrp1-/- mice, compared with their respective littermate control mice. These disruptions in the APOE4 smLrp1-/- mice were accompanied with excess paravascular glial activation and reduced cerebrovascular collagen IV. In addition, blood-brain barrier (BBB) integrity was disrupted in the APOE4 smLrp1-/- mice. Together, our results suggest that vascular mural cell LRP1 modulates cerebrovasculature integrity and function in an APOE genotype-dependent manner.


Sujet(s)
Maladie d'Alzheimer , Apolipoprotéine E4 , Humains , Souris , Animaux , Sujet âgé , Nourrisson , Apolipoprotéine E4/génétique , Apolipoprotéine E3/métabolisme , Apolipoprotéines E/métabolisme , Barrière hémato-encéphalique/métabolisme , Maladie d'Alzheimer/anatomopathologie , Protéine-1 apparentée au récepteur des LDL/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...