Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Infect Immun ; 86(7)2018 07.
Article de Anglais | MEDLINE | ID: mdl-29735522

RÉSUMÉ

Iron is an essential micronutrient for most microbes and their hosts. Mammalian hosts respond to infection by inducing the iron-regulatory hormone hepcidin, which causes iron sequestration and a rapid decrease in the plasma and extracellular iron concentration (hypoferremia). Previous studies showed that hepcidin regulation of iron is essential for protection from infection-associated mortality with the siderophilic pathogens Yersinia enterocolitica and Vibrio vulnificus However, the evolutionary conservation of the hypoferremic response to infection suggests that not only rare siderophilic bacteria but also common pathogens may be targeted by this mechanism. We tested 10 clinical isolates of Escherichia coli from children with sepsis and found that both genetic iron overload (by hepcidin-1 knockout [HKO]) and iatrogenic iron overload (by intravenous iron) potentiated infection with 8 out of the 10 studied isolates: after peritoneal injection of E. coli, iron-loaded mice developed sepsis with 60% to 100% mortality within 24 h, while control wild-type mice suffered 0% mortality. Using one strain for more detailed study, we show that iron overload allows rapid bacterial multiplication and dissemination. We further found that the presence of non-transferrin-bound iron (NTBI) in the circulation is more important than total plasma or tissue iron in rendering mice susceptible to infection and mortality. Postinfection treatment of HKO mice with just two doses of the hepcidin agonist PR73 abolished NTBI and completely prevented sepsis-associated mortality. We demonstrate that the siderophilic phenotype extends to clinically common pathogens. The use of hepcidin agonists promises to be an effective early intervention in patients with infections and dysregulated iron metabolism.


Sujet(s)
Bactériémie/mortalité , Infections à Escherichia coli/mortalité , Hepcidines/physiologie , Animaux , Bactériémie/étiologie , Bactériémie/microbiologie , Enfant , Infections à Escherichia coli/étiologie , Infections à Escherichia coli/microbiologie , Hepcidines/agonistes , Humains , Fer/métabolisme , Surcharge en fer/complications , Souris , Souris de lignée C57BL , Souris knockout , Transferrine/analyse
2.
Blood ; 131(8): 899-910, 2018 02 22.
Article de Anglais | MEDLINE | ID: mdl-29237594

RÉSUMÉ

Nonclassical ferroportin disease (FD) is a form of hereditary hemochromatosis caused by mutations in the iron transporter ferroportin (Fpn), resulting in parenchymal iron overload. Fpn is regulated by the hormone hepcidin, which induces Fpn endocytosis and cellular iron retention. We characterized 11 clinically relevant and 5 nonclinical Fpn mutations using stably transfected, inducible isogenic cell lines. All clinical mutants were functionally resistant to hepcidin as a consequence of either impaired hepcidin binding or impaired hepcidin-dependent ubiquitination despite intact hepcidin binding. Mapping the residues onto 2 computational models of the human Fpn structure indicated that (1) mutations that caused ubiquitination-resistance were positioned at helix-helix interfaces, likely preventing the hepcidin-induced conformational change, (2) hepcidin binding occurred within the central cavity of Fpn, (3) hepcidin interacted with up to 4 helices, and (4) hepcidin binding should occlude Fpn and interfere with iron export independently of endocytosis. We experimentally confirmed hepcidin-mediated occlusion of Fpn in the absence of endocytosis in multiple cellular systems: HEK293 cells expressing an endocytosis-defective Fpn mutant (K8R), Xenopus oocytes expressing wild-type or K8R Fpn, and mature human red blood cells. We conclude that nonclassical FD is caused by Fpn mutations that decrease hepcidin binding or hinder conformational changes required for ubiquitination and endocytosis of Fpn. The newly documented ability of hepcidin and its agonists to occlude iron transport may facilitate the development of broadly effective treatments for hereditary iron overload disorders.


Sujet(s)
Transporteurs de cations/composition chimique , Transporteurs de cations/métabolisme , Résistance aux substances , Hepcidines/métabolisme , Fer/métabolisme , Animaux , Sites de fixation , Transporteurs de cations/génétique , Cellules cultivées , Simulation numérique , Endocytose , Cellules HEK293 , Hepcidines/agonistes , Humains , Souris , Souris de lignée C57BL , Mutagenèse dirigée , Mutation , Ovocytes/cytologie , Ovocytes/métabolisme , Liaison aux protéines , Conformation des protéines , Domaines protéiques , Relation structure-activité , Ubiquitination , Xenopus laevis
3.
Blood ; 130(3): 245-257, 2017 07 20.
Article de Anglais | MEDLINE | ID: mdl-28465342

RÉSUMÉ

The iron-regulatory hormone hepcidin is induced early in infection, causing iron sequestration in macrophages and decreased plasma iron; this is proposed to limit the replication of extracellular microbes, but could also promote infection with macrophage-tropic pathogens. The mechanisms by which hepcidin and hypoferremia modulate host defense, and the spectrum of microbes affected, are poorly understood. Using mouse models, we show that hepcidin was selectively protective against siderophilic extracellular pathogens (Yersinia enterocolitica O9) by controlling non-transferrin-bound iron (NTBI) rather than iron-transferrin concentration. NTBI promoted the rapid growth of siderophilic but not nonsiderophilic bacteria in mice with either genetic or iatrogenic iron overload and in human plasma. Hepcidin or iron loading did not affect other key components of innate immunity, did not indiscriminately promote intracellular infections (Mycobacterium tuberculosis), and had no effect on extracellular nonsiderophilic Y enterocolitica O8 or Staphylococcus aureus Hepcidin analogs may be useful for treatment of siderophilic infections.


Sujet(s)
Infections sur cathéters/immunologie , Hémochromatose/immunologie , Hepcidines/immunologie , Surcharge en fer/immunologie , Fer/métabolisme , Infections à staphylocoques/immunologie , Animaux , Fixation compétitive , Infections sur cathéters/métabolisme , Infections sur cathéters/microbiologie , Infections sur cathéters/mortalité , Modèles animaux de maladie humaine , Résistance à la maladie , Expression des gènes , Hémochromatose/métabolisme , Hémochromatose/microbiologie , Hémochromatose/mortalité , Hepcidines/agonistes , Hepcidines/déficit , Hepcidines/génétique , Humains , Fer/immunologie , Surcharge en fer/métabolisme , Surcharge en fer/microbiologie , Surcharge en fer/mortalité , Souris , Souris de lignée C57BL , Souris knockout , Mycobacterium tuberculosis/effets des médicaments et des substances chimiques , Mycobacterium tuberculosis/croissance et développement , Mycobacterium tuberculosis/métabolisme , Oligopeptides/pharmacologie , Liaison aux protéines , Infections à staphylocoques/métabolisme , Infections à staphylocoques/microbiologie , Infections à staphylocoques/mortalité , Staphylococcus aureus , Analyse de survie , Transferrine/génétique , Transferrine/métabolisme , Yersinia enterocolitica/effets des médicaments et des substances chimiques , Yersinia enterocolitica/croissance et développement , Yersinia enterocolitica/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE