Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Bioorg Med Chem ; 87: 117303, 2023 05 03.
Article de Anglais | MEDLINE | ID: mdl-37167713

RÉSUMÉ

Since the 1950's, AMP-kinase (AMPK) has been used as a promising target for the development of antidiabetic drugs against Type 2 diabetes mellitus (T2D). Indeed, the canonical antidiabetic drug metformin recruits, at least partially, AMPK activation for its therapeutic effect. Herein we present design and synthesis of 20 novel relatively polar cyclic and acyclic dithioacetals of 2-(Het)arylchroman-6-carbaldehydes, 2-phenyl-1,4-benzodioxane-6-carbaldehyde, and 2-phenylbenzofuran-5-carbaldehyde, which were developed as potential AMPK activators. Three of the synthesized dithioacetals demonstrated significant enhancement (≥70%) of glucose uptake in rat L6 myotubes. Noteworthy, one of the dithioacetals, namely 4-(6-(1,3-dithian-2-yl)chroman-2-yl)pyridine, exhibited high potency comparing to other molecules. It increased the rate of glucose uptake in rat L6 myotubes and augmented insulin secretion from rat INS-1E cells in pharmacological relevant concentrations (up to 2 µM). Both effects were mediated by activation of AMPK. In addition, the compound showed excellent pharmacokinetic profile in healthy mice, including maximal oral bioavailability. Such bifunctionality (increased glucose uptake and insulin secretion) can be used as a starting point for the development of a novel class of antidiabetic drugs with dual activity that is relevant for T2D treatment.


Sujet(s)
Diabète de type 2 , Hypoglycémiants , Rats , Souris , Animaux , Hypoglycémiants/pharmacologie , Hypoglycémiants/usage thérapeutique , AMP-Activated Protein Kinases , Diabète de type 2/traitement médicamenteux , Glucose/pharmacologie , Lignée cellulaire , Fibres musculaires squelettiques , Insuline/pharmacologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE