Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 13 de 13
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Cancer Cell ; 40(12): 1537-1549.e12, 2022 12 12.
Article de Anglais | MEDLINE | ID: mdl-36400018

RÉSUMÉ

In the Circulating Cell-free Genome Atlas (NCT02889978) substudy 1, we evaluate several approaches for a circulating cell-free DNA (cfDNA)-based multi-cancer early detection (MCED) test by defining clinical limit of detection (LOD) based on circulating tumor allele fraction (cTAF), enabling performance comparisons. Among 10 machine-learning classifiers trained on the same samples and independently validated, when evaluated at 98% specificity, those using whole-genome (WG) methylation, single nucleotide variants with paired white blood cell background removal, and combined scores from classifiers evaluated in this study show the highest cancer signal detection sensitivities. Compared with clinical stage and tumor type, cTAF is a more significant predictor of classifier performance and may more closely reflect tumor biology. Clinical LODs mirror relative sensitivities for all approaches. The WG methylation feature best predicts cancer signal origin. WG methylation is the most promising technology for MCED and informs development of a targeted methylation MCED test.


Sujet(s)
Acides nucléiques acellulaires , Tumeurs , Humains , Acides nucléiques acellulaires/génétique , Dépistage précoce du cancer , Tumeurs/diagnostic , Tumeurs/génétique , Marqueurs biologiques tumoraux/génétique , Méthylation de l'ADN
2.
Cell Metab ; 23(6): 1004-1012, 2016 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-27304502

RÉSUMÉ

As the first and most direct process influencing the proteostasis capacity of a cell, regulation of translation influences lifespan across taxa. Here we highlight some of the newly discovered means by which translational regulation affects cellular proteostasis, with a focus on mechanisms that may ultimately impinge upon the aging process.


Sujet(s)
Vieillissement/métabolisme , Protéines/métabolisme , Ribosomes/métabolisme , Animaux , Humains , Modèles biologiques , Biosynthèse des protéines , Stress physiologique
3.
Cell ; 165(5): 1209-1223, 2016 May 19.
Article de Anglais | MEDLINE | ID: mdl-27133168

RÉSUMÉ

Across eukaryotic species, mild mitochondrial stress can have beneficial effects on the lifespan of organisms. Mitochondrial dysfunction activates an unfolded protein response (UPR(mt)), a stress signaling mechanism designed to ensure mitochondrial homeostasis. Perturbation of mitochondria during larval development in C. elegans not only delays aging but also maintains UPR(mt) signaling, suggesting an epigenetic mechanism that modulates both longevity and mitochondrial proteostasis throughout life. We identify the conserved histone lysine demethylases jmjd-1.2/PHF8 and jmjd-3.1/JMJD3 as positive regulators of lifespan in response to mitochondrial dysfunction across species. Reduction of function of the demethylases potently suppresses longevity and UPR(mt) induction, while gain of function is sufficient to extend lifespan in a UPR(mt)-dependent manner. A systems genetics approach in the BXD mouse reference population further indicates conserved roles of the mammalian orthologs in longevity and UPR(mt) signaling. These findings illustrate an evolutionary conserved epigenetic mechanism that determines the rate of aging downstream of mitochondrial perturbations.


Sujet(s)
Protéines de Caenorhabditis elegans/métabolisme , Caenorhabditis elegans/physiologie , Histone Demethylases/métabolisme , Jumonji Domain-Containing Histone Demethylases/métabolisme , Animaux , Caenorhabditis elegans/génétique , Longévité , Souris , Mitochondries/métabolisme , Facteurs de transcription/métabolisme , Transcription génétique , Réponse aux protéines mal repliées
4.
Cell ; 165(5): 1197-1208, 2016 May 19.
Article de Anglais | MEDLINE | ID: mdl-27133166

RÉSUMÉ

Organisms respond to mitochondrial stress through the upregulation of an array of protective genes, often perpetuating an early response to metabolic dysfunction across a lifetime. We find that mitochondrial stress causes widespread changes in chromatin structure through histone H3K9 di-methylation marks traditionally associated with gene silencing. Mitochondrial stress response activation requires the di-methylation of histone H3K9 through the activity of the histone methyltransferase met-2 and the nuclear co-factor lin-65. While globally the chromatin becomes silenced by these marks, remaining portions of the chromatin open up, at which point the binding of canonical stress responsive factors such as DVE-1 occurs. Thus, a metabolic stress response is established and propagated into adulthood of animals through specific epigenetic modifications that allow for selective gene expression and lifespan extension.


Sujet(s)
Caenorhabditis elegans/physiologie , Assemblage et désassemblage de la chromatine , Réponse aux protéines mal repliées , Animaux , Caenorhabditis elegans/cytologie , Caenorhabditis elegans/génétique , Caenorhabditis elegans/croissance et développement , Protéines de Caenorhabditis elegans/métabolisme , Épigenèse génétique , Régulation de l'expression des gènes , Histone-lysine N-methyltransferase/métabolisme , Histone/métabolisme , Longévité , Mitochondries/métabolisme
5.
Genetics ; 191(1): 107-18, 2012 May.
Article de Anglais | MEDLINE | ID: mdl-22377630

RÉSUMÉ

In Saccharomyces cerevisiae, 59 of the 78 ribosomal proteins are encoded by duplicated genes that, in most cases, encode identical or very similar protein products. However, different sets of ribosomal protein genes have been identified in screens for various phenotypes, including life span, budding pattern, and drug sensitivities. Due to potential suppressors of growth rate defects among this set of strains in the ORF deletion collection, we regenerated the entire set of haploid ribosomal protein gene deletion strains in a clean genetic background. The new strains were used to create double deletions lacking both paralogs, allowing us to define a set of 14 nonessential ribosomal proteins. Replicative life-span analysis of new strains corresponding to ORF deletion collection strains that likely carried suppressors of growth defects identified 11 new yeast replicative aging genes. Treatment of the collection of ribosomal protein gene deletion strains with tunicamycin revealed a significant correlation between slow growth and resistance to ER stress that was recapitulated by reducing translation of wild-type yeast with cycloheximide. Interestingly, enhanced tunicamycin resistance in ribosomal protein gene deletion mutants was independent of the unfolded protein response transcription factor Hac1. These data support a model in which reduced translation is protective against ER stress by a mechanism distinct from the canonical ER stress response pathway and further add to the diverse yet specific phenotypes associated with ribosomal protein gene deletions.


Sujet(s)
Stress du réticulum endoplasmique/génétique , Délétion de gène , Protéines ribosomiques/déficit , Protéines ribosomiques/génétique , Ribosomes/génétique , Saccharomyces cerevisiae/cytologie , Saccharomyces cerevisiae/génétique , Cycloheximide/pharmacologie , Stress du réticulum endoplasmique/effets des médicaments et des substances chimiques , Haploïdie , Protéines ribosomiques/métabolisme , Ribosomes/effets des médicaments et des substances chimiques , Saccharomyces cerevisiae/effets des médicaments et des substances chimiques , Saccharomyces cerevisiae/physiologie , Facteurs temps
6.
Cell ; 146(6): 859-60, 2011 Sep 16.
Article de Anglais | MEDLINE | ID: mdl-21925309

RÉSUMÉ

AMP-activated protein kinase (AMPK) is a conserved cellular fuel gauge previously implicated in aging. In this issue, Lu et al. (2011) describe how age-related deacetylation of Sip2, a subunit of the AMPK homolog in yeast, acts as a life span clock that can be wound backward or forward to modulate longevity.

7.
Aging Cell ; 10(6): 1089-91, 2011 Dec.
Article de Anglais | MEDLINE | ID: mdl-21902802

RÉSUMÉ

Activation of Sir2 orthologs is proposed to increase lifespan downstream of dietary restriction. Here, we describe an examination of the effect of 32 different lifespan-extending mutations and four methods of DR on replicative lifespan (RLS) in the short-lived sir2Δ yeast strain. In every case, deletion of SIR2 prevented RLS extension; however, RLS extension was restored when both SIR2 and FOB1 were deleted in several cases, demonstrating that SIR2 is not directly required for RLS extension. These findings indicate that suppression of the sir2Δ lifespan defect is a rare phenotype among longevity interventions and suggest that sir2Δ cells senesce rapidly by a mechanism distinct from that of wild-type cells. They also demonstrate that failure to observe lifespan extension in a short-lived background, such as cells or animals lacking sirtuins, should be interpreted with caution.


Sujet(s)
Protéines de liaison à l'ADN/génétique , Longévité/génétique , Protéines de Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/génétique , Protéines SIR de Saccharomyces cerevisiae/génétique , Sirtuine-2/génétique , Protéines de liaison à l'ADN/déficit , Délétion de gène , Régulation de l'expression des gènes fongiques , Génotype , Modèles biologiques , Biais de l'observateur , Phénotype , Saccharomyces cerevisiae/métabolisme , Protéines SIR de Saccharomyces cerevisiae/déficit , Sirtuine-2/déficit
8.
J Vis Exp ; (28)2009 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-19556967

RÉSUMÉ

Aging is a degenerative process characterized by a progressive deterioration of cellular components and organelles resulting in mortality. The budding yeast Saccharomyces cerevisiae has been used extensively to study the biology of aging, and several determinants of yeast longevity have been shown to be conserved in multicellular eukaryotes, including worms, flies, and mice. Due to the lack of easily quantified age-associated phenotypes, aging in yeast has been assayed almost exclusively by measuring the life span of cells in different contexts, with two different life span paradigms in common usage. Chronological life span refers to the length of time that a mother cell can survive in a non-dividing, quiescence-like state, and is proposed to serve as a model for aging of post-mitotic cells in multicellular eukaryotes. Replicative life span, in contrast, refers the number of daughter cells produced by a mother cell prior to senescence, and is thought to provide a model of aging in mitotically active cells. Here we present a generalized protocol for measuring the replicative life span of budding yeast mother cells. The goal of the replicative life span assay is to determine how many times each mother cell buds. The mother and daughter cells can be easily differentiated by an experienced researcher using a standard light microscope (total magnification 160X), such as the Zeiss Axioscope 40 or another comparable model. Physical separation of daughter cells from mother cells is achieved using a manual micromanipulator equipped with a fiber-optic needle. Typical laboratory yeast strains produce 20-30 daughter cells per mother and one life span experiment requires 2-3 weeks.


Sujet(s)
Saccharomyces cerevisiae/physiologie , Facteurs âges , Division cellulaire/physiologie , Mycologie/méthodes , Saccharomyces cerevisiae/cytologie
9.
Nature ; 459(7248): 802-7, 2009 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-19516333

RÉSUMÉ

Cells undergoing developmental processes are characterized by persistent non-genetic alterations in chromatin, termed epigenetic changes, represented by distinct patterns of DNA methylation and histone post-translational modifications. Sirtuins, a group of conserved NAD(+)-dependent deacetylases or ADP-ribosyltransferases, promote longevity in diverse organisms; however, their molecular mechanisms in ageing regulation remain poorly understood. Yeast Sir2, the first member of the family to be found, establishes and maintains chromatin silencing by removing histone H4 lysine 16 acetylation and bringing in other silencing proteins. Here we report an age-associated decrease in Sir2 protein abundance accompanied by an increase in H4 lysine 16 acetylation and loss of histones at specific subtelomeric regions in replicatively old yeast cells, which results in compromised transcriptional silencing at these loci. Antagonizing activities of Sir2 and Sas2, a histone acetyltransferase, regulate the replicative lifespan through histone H4 lysine 16 at subtelomeric regions. This pathway, distinct from existing ageing models for yeast, may represent an evolutionarily conserved function of sirtuins in regulation of replicative ageing by maintenance of intact telomeric chromatin.


Sujet(s)
Histone/composition chimique , Histone/métabolisme , Lysine/métabolisme , Saccharomyces cerevisiae/cytologie , Saccharomyces cerevisiae/métabolisme , Acétylation , Acetyltransferases/métabolisme , Division cellulaire , Chromatine/génétique , Chromatine/métabolisme , Épistasie , Régulation de l'expression des gènes fongiques , Extinction de l'expression des gènes , Histone acetyltransferases , Inhibiteurs de désacétylase d'histone , Histone deacetylases/déficit , Histone deacetylases/métabolisme , Histone/génétique , Protéines mutantes/génétique , Protéines mutantes/métabolisme , Mutation , Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines SIR de Saccharomyces cerevisiae/antagonistes et inhibiteurs , Protéines SIR de Saccharomyces cerevisiae/déficit , Protéines SIR de Saccharomyces cerevisiae/métabolisme , Sirtuine-2 , Sirtuines/antagonistes et inhibiteurs , Sirtuines/déficit , Sirtuines/métabolisme , Télomère/génétique , Télomère/métabolisme , Transcription génétique
10.
Cell ; 133(2): 292-302, 2008 Apr 18.
Article de Anglais | MEDLINE | ID: mdl-18423200

RÉSUMÉ

In nearly every organism studied, reduced caloric intake extends life span. In yeast, span extension from dietary restriction is thought to be mediated by the highly conserved, nutrient-responsive target of rapamycin (TOR), protein kinase A (PKA), and Sch9 kinases. These kinases coordinately regulate various cellular processes including stress responses, protein turnover, cell growth, and ribosome biogenesis. Here we show that a specific reduction of 60S ribosomal subunit levels slows aging in yeast. Deletion of genes encoding 60S subunit proteins or processing factors or treatment with a small molecule, which all inhibit 60S subunit biogenesis, are each sufficient to significantly increase replicative life span. One mechanism by which reduced 60S subunit levels leads to life span extension is through induction of Gcn4, a nutrient-responsive transcription factor. Genetic epistasis analyses suggest that dietary restriction, reduced 60S subunit abundance, and Gcn4 activation extend yeast life span by similar mechanisms.


Sujet(s)
Protéines de liaison à l'ADN/physiologie , Grande sous-unité du ribosome des eucaryotes/physiologie , Protéines de Saccharomyces cerevisiae/physiologie , Saccharomyces cerevisiae/physiologie , Facteurs de transcription/physiologie , Facteurs de transcription à motif basique et à glissière à leucines , Délétion de gène , Histone deacetylases/physiologie , Protéines ribosomiques/physiologie , Protéines SIR de Saccharomyces cerevisiae/physiologie , Sirtuine-2 , Sirtuines/physiologie
11.
Aging Cell ; 5(6): 505-14, 2006 Dec.
Article de Anglais | MEDLINE | ID: mdl-17129213

RÉSUMÉ

Two models have been proposed for how calorie restriction (CR) enhances replicative longevity in yeast: (i) suppression of rDNA recombination through activation of the sirtuin protein deacetylase Sir2 or (ii) decreased activity of the nutrient-responsive kinases Sch9 and TOR. We report here that CR increases lifespan independently of all Sir2-family proteins in yeast. Furthermore, we demonstrate that nicotinamide, an inhibitor of Sir2-mediated deacetylation, interferes with lifespan extension from CR, but does so independent of Sir2, Hst1, Hst2, and Hst4. We also find that 5 mm nicotinamide, a concentration sufficient to inhibit other sirtuins, does not phenocopy deletion of HST3. Thus, we propose that lifespan extension by CR is independent of sirtuins and that nicotinamide has sirtuin-independent effects on lifespan extension by CR.


Sujet(s)
Vieillissement/physiologie , Privation alimentaire/physiologie , Histone deacetylases/métabolisme , Longévité/physiologie , Nicotinamide/métabolisme , Saccharomyces cerevisiae/métabolisme , Protéines SIR de Saccharomyces cerevisiae/métabolisme , Sirtuines/métabolisme , Acétylation/effets des médicaments et des substances chimiques , Vieillissement/effets des médicaments et des substances chimiques , Restriction calorique , Division cellulaire/effets des médicaments et des substances chimiques , Division cellulaire/physiologie , Vieillissement de la cellule/effets des médicaments et des substances chimiques , Vieillissement de la cellule/physiologie , Histone deacetylases/génétique , Longévité/effets des médicaments et des substances chimiques , Nicotinamide/pharmacologie , Saccharomyces cerevisiae/effets des médicaments et des substances chimiques , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Sirtuine-2
12.
Science ; 312(5778): 1312; author reply 1312, 2006 Jun 02.
Article de Anglais | MEDLINE | ID: mdl-16741098

RÉSUMÉ

Calorie restriction (CR) increases life span in yeast independently of Sir2. Lamming et al. (Reports, 16 September 2005, p. 1861) recently proposed that Sir2-independent life-span extension by CR is mediated by the Sir2 paralogs Hst1 and Hst2. Contradictory to this, we find that CR greatly increases life span in cells lacking Sir2, Hst1, and Hst2, which suggests that CR is not mediated by Sir2, Hst2, or Hst1.


Sujet(s)
Restriction calorique , Histone deacetylases/physiologie , Longévité , Protéines de Saccharomyces cerevisiae/physiologie , Saccharomyces cerevisiae/physiologie , Protéines SIR de Saccharomyces cerevisiae/physiologie , Sirtuines/physiologie , Glucose/métabolisme , Sirtuine-2
13.
Science ; 310(5751): 1193-6, 2005 Nov 18.
Article de Anglais | MEDLINE | ID: mdl-16293764

RÉSUMÉ

Calorie restriction increases life span in many organisms, including the budding yeast Saccharomyces cerevisiae. From a large-scale analysis of 564 single-gene-deletion strains of yeast, we identified 10 gene deletions that increase replicative life span. Six of these correspond to genes encoding components of the nutrient-responsive TOR and Sch9 pathways. Calorie restriction of tor1D or sch9D cells failed to further increase life span and, like calorie restriction, deletion of either SCH9 or TOR1 increased life span independent of the Sir2 histone deacetylase. We propose that the TOR and Sch9 kinases define a primary conduit through which excess nutrient intake limits longevity in yeast.


Sujet(s)
Protein kinases/métabolisme , Protéines de Saccharomyces cerevisiae/physiologie , Saccharomyces cerevisiae/physiologie , Division cellulaire/génétique , Division cellulaire/physiologie , Délétion de gène , Protein-Serine-Threonine Kinases , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE