Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 201
Filtrer
1.
Nature ; 2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-39143210

RÉSUMÉ

Bread wheat (Triticum aestivum) is a globally dominant crop and major source of calories and proteins for the human diet. Compared with its wild ancestors, modern bread wheat shows lower genetic diversity, caused by polyploidisation, domestication and breeding bottlenecks1,2. Wild wheat relatives represent genetic reservoirs, and harbour diversity and beneficial alleles that have not been incorporated into bread wheat. Here we establish and analyse extensive genome resources for Tausch's goatgrass (Aegilops tauschii), the donor of the bread wheat D genome. Our analysis of 46 Ae. tauschii genomes enabled us to clone a disease resistance gene and perform haplotype analysis across a complex disease resistance locus, allowing us to discern alleles from paralogous gene copies. We also reveal the complex genetic composition and history of the bread wheat D genome, which involves contributions from genetically and geographically discrete Ae. tauschii subpopulations. Together, our results reveal the complex history of the bread wheat D genome and demonstrate the potential of wild relatives in crop improvement.

2.
Science ; 385(6708): eado1663, 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39088611

RÉSUMÉ

An enduring question in evolutionary biology concerns the degree to which episodes of convergent trait evolution depend on the same genetic programs, particularly over long timescales. In this work, we genetically dissected repeated origins and losses of prickles-sharp epidermal projections-that convergently evolved in numerous plant lineages. Mutations in a cytokinin hormone biosynthetic gene caused at least 16 independent losses of prickles in eggplants and wild relatives in the genus Solanum. Homologs underlie prickle formation across angiosperms that collectively diverged more than 150 million years ago, including rice and roses. By developing new Solanum genetic systems, we leveraged this discovery to eliminate prickles in a wild species and an indigenously foraged berry. Our findings implicate a shared hormone activation genetic program underlying evolutionarily widespread and recurrent instances of plant morphological innovation.


Sujet(s)
Évolution biologique , Cytokinine , Gènes de plante , Épiderme végétal , Solanum , Cytokinine/biosynthèse , Cytokinine/génétique , Évolution moléculaire , Mutation , Oryza/génétique , Phylogenèse , Épiderme végétal/anatomie et histologie , Épiderme végétal/génétique , Solanum/anatomie et histologie , Solanum/génétique
3.
J Exp Bot ; 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38932564

RÉSUMÉ

In the realm of agricultural sustainability, the utilization of plant genetic resources (PGRs) for enhanced disease resistance is paramount. Preservation efforts in genebanks are justified by their potential contributions to future crop improvement. To capitalize on the potential of PGRs, we focused on a barley core collection from the German ex situ genebank, and contrasted it with a European elite collection. The phenotypic assessment included 812 PGRs and 298 elites with a particular emphasis on four disease traits (Puccinia hordei, Blumeria graminis hordei, Ramularia collo-cygni, and Rhynchosporium commune). An integrated genome-wide association study, employing both Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) and a linear mixed model, was performed to unravel the genetic underpinnings of disease resistance. A total of 932 marker-trait associations were identified and assigned to 49 quantitative trait loci. The accumulation of novel and rare resistance alleles significantly bolstered the overall resistance level in PGRs. Three PGR donors with high counts of novel/rare alleles and exhibited exceptional resistance to leaf rust and powdery mildew were identified, offering promise for targeted pre-breeding goals and enhanced resilience in forthcoming varieties. Our findings underscore the critical contribution of PGRs to strengthening crop resilience and advancing sustainable agricultural practices.

4.
New Phytol ; 2024 Apr 26.
Article de Anglais | MEDLINE | ID: mdl-38666346

RÉSUMÉ

Barley (Hordeum vulgare) is an important global cereal crop and a model in genetic studies. Despite advances in characterising barley genomic resources, few mutant studies have identified genes controlling root architecture and anatomy, which plays a critical role in capturing soil resources. Our phenotypic screening of a TILLING mutant collection identified line TM5992 exhibiting a short-root phenotype compared with wild-type (WT) Morex background. Outcrossing TM5992 with barley variety Proctor and subsequent SNP array-based bulk segregant analysis, fine mapped the mutation to a cM scale. Exome sequencing pinpointed a mutation in the candidate gene HvPIN1a, further confirming this by analysing independent mutant alleles. Detailed analysis of root growth and anatomy in Hvpin1a mutant alleles exhibited a slower growth rate, shorter apical meristem and striking vascular patterning defects compared to WT. Expression and mutant analyses of PIN1 members in the closely related cereal brachypodium (Brachypodium distachyon) revealed that BdPIN1a and BdPIN1b were redundantly expressed in root vascular tissues but only Bdpin1a mutant allele displayed root vascular defects similar to Hvpin1a. We conclude that barley PIN1 genes have sub-functionalised in cereals, compared to Arabidopsis (Arabidopsis thaliana), where PIN1a sequences control root vascular patterning.

5.
Nat Plants ; 10(5): 719-731, 2024 05.
Article de Anglais | MEDLINE | ID: mdl-38605239

RÉSUMÉ

In 1993, a passionate and provocative call to arms urged cereal researchers to consider the taxon they study as a single genetic system and collaborate with each other. Since then, that group of scientists has seen their discipline blossom. In an attempt to understand what unity of genetic systems means and how the notion was borne out by later research, we survey the progress and prospects of cereal genomics: sequence assemblies, population-scale sequencing, resistance gene cloning and domestication genetics. Gene order may not be as extraordinarily well conserved in the grasses as once thought. Still, several recurring themes have emerged. The same ancestral molecular pathways defining plant architecture have been co-opted in the evolution of different cereal crops. Such genetic convergence as much as cross-fertilization of ideas between cereal geneticists has led to a rich harvest of genes that, it is hoped, will lead to improved varieties.


Sujet(s)
Grains comestibles , Poaceae , Produits agricoles/génétique , Domestication , Grains comestibles/génétique , Génome végétal , Génomique , Poaceae/génétique
6.
Hereditas ; 161(1): 11, 2024 Mar 08.
Article de Anglais | MEDLINE | ID: mdl-38454479

RÉSUMÉ

BACKGROUND: Mutants have had a fundamental impact upon scientific and applied genetics. They have paved the way for the molecular and genomic era, and most of today's crop plants are derived from breeding programs involving mutagenic treatments. RESULTS: Barley (Hordeum vulgare L.) is one of the most widely grown cereals in the world and has a long history as a crop plant. Barley breeding started more than 100 years ago and large breeding programs have collected and generated a wide range of natural and induced mutants, which often were deposited in genebanks around the world. In recent years, an increased interest in genetic diversity has brought many historic mutants into focus because the collections are regarded as valuable resources for understanding the genetic control of barley biology and barley breeding. The increased interest has been fueled also by recent advances in genomic research, which provided new tools and possibilities to analyze and reveal the genetic diversity of mutant collections. CONCLUSION: Since detailed knowledge about phenotypic characters of the mutants is the key to success of genetic and genomic studies, we here provide a comprehensive description of mostly morphological barley mutants. The review is closely linked to the International Database for Barley Genes and Barley Genetic Stocks ( bgs.nordgen.org ) where further details and additional images of each mutant described in this review can be found.


Sujet(s)
Hordeum , Hordeum/génétique , Amélioration des plantes , Mutagenèse , Génomique
7.
GigaByte ; 2024: gigabyte112, 2024.
Article de Anglais | MEDLINE | ID: mdl-38496214

RÉSUMÉ

This work is an update and extension of the previously published article "Ultralong Oxford Nanopore Reads Enable the Development of a Reference-Grade Perennial Ryegrass Genome Assembly" by Frei et al. The published genome assembly of the doubled haploid perennial ryegrass (Lolium perenne L.) genotype Kyuss (Kyuss v1.0) marked a milestone for forage grass research and breeding. However, order and orientation errors may exist in the pseudo-chromosomes of Kyuss, since barley (Hordeum vulgare L.), which diverged 30 million years ago from perennial ryegrass, was used as the reference to scaffold Kyuss. To correct for structural errors possibly present in the published Kyuss assembly, we de novo assembled the genome again and generated 50-fold coverage high-throughput chromosome conformation capture (Hi-C) data to assist pseudo-chromosome construction. The resulting new chromosome-level assembly Kyuss v2.0 showed improved quality with high contiguity (contig N50 = 120 Mb), high completeness (total BUSCO score = 99%), high base-level accuracy (QV = 50), and correct pseudo-chromosome structure (validated by Hi-C contact map). This new assembly will serve as a better reference genome for Lolium spp. and greatly benefit the forage and turf grass research community.

8.
Theor Appl Genet ; 137(3): 60, 2024 Feb 27.
Article de Anglais | MEDLINE | ID: mdl-38409375

RÉSUMÉ

KEY MESSAGE: We mapped Ryd4Hb in a 66.5 kbp interval in barley and dissociated it from a sublethality factor. These results will enable a targeted selection of the resistance in barley breeding. Virus diseases are causing high yield losses in crops worldwide. The Barley yellow dwarf virus (BYDV) complex is responsible for one of the most widespread and economically important viral diseases of cereals. While no gene conferring complete resistance (immunity) has been uncovered in the primary gene pool of barley, sources of resistance were searched and identified in the wild relative Hordeum bulbosum, representing the secondary gene pool of barley. One such locus, Ryd4Hb, has been previously introgressed into barley, and was allocated to chromosome 3H, but is tightly linked to a sublethality factor that prevents the incorporation and utilization of Ryd4Hb in barley varieties. To solve this problem, we fine-mapped Ryd4Hb and separated it from this negative factor. We narrowed the Ryd4Hb locus to a corresponding 66.5 kbp physical interval in the barley 'Morex' reference genome. The region comprises a gene from the nucleotide-binding and leucine-rich repeat immune receptor family, typical of dominant virus resistance genes. The closest homolog to this Ryd4Hb candidate gene is the wheat Sr35 stem rust resistance gene. In addition to the fine mapping, we reduced the interval bearing the sublethality factor to 600 kbp in barley. Aphid feeding experiments demonstrated that Ryd4Hb provides a resistance to BYDV rather than to its vector. The presented results, including the high-throughput molecular markers, will permit a more targeted selection of the resistance in breeding, enabling the use of Ryd4Hb in barley varieties.


Sujet(s)
Hordeum , Luteovirus , Cartographie chromosomique , Hordeum/génétique , Marqueurs génétiques , Résistance à la maladie/génétique , Luteovirus/génétique , Amélioration des plantes , Maladies des plantes
9.
Nat Rev Genet ; 25(8): 563-577, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38378816

RÉSUMÉ

Plant genome sequences catalogue genes and the genetic elements that regulate their expression. Such inventories further research aims as diverse as mapping the molecular basis of trait diversity in domesticated plants or inquiries into the origin of evolutionary innovations in flowering plants millions of years ago. The transformative technological progress of DNA sequencing in the past two decades has enabled researchers to sequence ever more genomes with greater ease. Pangenomes - complete sequences of multiple individuals of a species or higher taxonomic unit - have now entered the geneticists' toolkit. The genomes of crop plants and their wild relatives are being studied with translational applications in breeding in mind. But pangenomes are applicable also in ecological and evolutionary studies, as they help classify and monitor biodiversity across the tree of life, deepen our understanding of how plant species diverged and show how plants adapt to changing environments or new selection pressures exerted by human beings.


Sujet(s)
Biodiversité , Produits agricoles , Génome végétal , Produits agricoles/génétique , Évolution moléculaire , Amélioration des plantes/méthodes , Variation génétique , Évolution biologique
10.
Mol Biol Evol ; 41(2)2024 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-38243866

RÉSUMÉ

Vascular plants have segmented body axes with iterative nodes and internodes. Appropriate node initiation and internode elongation are fundamental to plant fitness and crop yield; however, how these events are spatiotemporally coordinated remains elusive. We show that in barley (Hordeum vulgare L.), selections during domestication have extended the apical meristematic phase to promote node initiation, but constrained subsequent internode elongation. In both vegetative and reproductive phases, internode elongation displays a dynamic proximal-distal gradient, and among subpopulations of domesticated barleys worldwide, node initiation and proximal internode elongation are associated with latitudinal and longitudinal gradients, respectively. Genetic and functional analyses suggest that, in addition to their converging roles in node initiation, flowering-time genes have been repurposed to specify the timing and duration of internode elongation. Our study provides an integrated view of barley node initiation and internode elongation and suggests that plant architecture should be recognized as a collection of dynamic phytomeric units in the context of crop adaptive evolution.


Sujet(s)
Adaptation biologique , Hordeum , Hordeum/génétique , Hordeum/croissance et développement , Domestication
11.
Sci Data ; 11(1): 66, 2024 Jan 12.
Article de Anglais | MEDLINE | ID: mdl-38216606

RÉSUMÉ

Barley genomic resources are increasing rapidly, with the publication of a barley pangenome as one of the latest developments. Two-row spring barley cultivars are intensely studied as they are the source of high-quality grain for malting and distilling. Here we provide data from a European two-row spring barley population containing 209 different genotypes registered for the UK market between 1830 to 2014. The dataset encompasses RNA-sequencing data from six different tissues across a range of barley developmental stages, phenotypic datasets from two consecutive years of field-grown trials in the United Kingdom, Germany and the USA; and whole genome shotgun sequencing from all cultivars, which was used to complement the RNA-sequencing data for variant calling. The outcomes are a filtered SNP marker file, a phenotypic database and a large gene expression dataset providing a comprehensive resource which allows for downstream analyses like genome wide association studies or expression associations.


Sujet(s)
Génome végétal , Hordeum , Étude d'association pangénomique , Génomique , Génotype , Hordeum/génétique , ARN
12.
Theor Appl Genet ; 136(10): 208, 2023 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-37695370

RÉSUMÉ

KEY MESSAGE: We demonstrate how an algorithm that uses cheap genetic marker data can ensure the taxonomic assignments of genebank samples are complete, intuitive, and consistent-which enhances their value. To maximise the benefit of genebank resources, accurate and complete taxonomic assignments are imperative. The rise of genebank genomics allows genetic methods to be used to ensure this, but these need to be largely automated since the number of samples dealt with is too great for efficient manual recategorisation, however no clearly optimal method has yet arisen. A recent landmark genebank genomic study sequenced over 10,000 genebank accessions of peppers (Capsicum spp.), a species of great commercial, cultural, and scientific importance, which suffers from much taxonomic ambiguity. Similar datasets will, in coming decades, be produced for hundreds of plant taxa, affording a perfect opportunity to develop automated taxonomic correction methods in advance of the incipient genebank genomics explosion, alongside providing insights into pepper taxonomy in general. We present a marker-based taxonomic assignment approach that combines ideas from several standard classification algorithms, resulting in a highly flexible and customisable classifier suitable to impose intuitive assignments, even in highly reticulated species groups with complex population structures and evolutionary histories. Our classifier performs favourably compared with key alternative methods. Possible sensible alterations to pepper taxonomy based on the results are proposed for discussion by the relevant communities.


Sujet(s)
Capsicum , Capsicum/génétique , Légumes , Algorithmes , Évolution biologique , Camphre , Menthol
13.
Front Plant Sci ; 14: 1227656, 2023.
Article de Anglais | MEDLINE | ID: mdl-37701801

RÉSUMÉ

Genome-wide prediction is a powerful tool in breeding. Initial results suggest that genome-wide approaches are also promising for enhancing the use of the genebank material: predicting the performance of plant genetic resources can unlock their hidden potential and fill the information gap in genebanks across the world and, hence, underpin prebreeding programs. As a proof of concept, we evaluated the power of across-genebank prediction for extensive germplasm collections relying on historical data on flowering/heading date, plant height, and thousand kernel weight of 9,344 barley (Hordeum vulgare L.) plant genetic resources from the German Federal Ex situ Genebank for Agricultural and Horticultural Crops (IPK) and of 1,089 accessions from the International Center for Agriculture Research in the Dry Areas (ICARDA) genebank. Based on prediction abilities for each trait, three scenarios for predictive characterization were compared: 1) a benchmark scenario, where test and training sets only contain ICARDA accessions, 2) across-genebank predictions using IPK as training and ICARDA as test set, and 3) integrated genebank predictions that include IPK with 30% of ICARDA accessions as a training set to predict the rest of ICARDA accessions. Within the population of ICARDA accessions, prediction abilities were low to moderate, which was presumably caused by a limited number of accessions used to train the model. Interestingly, ICARDA prediction abilities were boosted up to ninefold by using training sets composed of IPK plus 30% of ICARDA accessions. Pervasive genotype × environment interactions (GEIs) can become a potential obstacle to train robust genome-wide prediction models across genebanks. This suggests that the potential adverse effect of GEI on prediction ability was counterbalanced by the augmented training set with certain connectivity to the test set. Therefore, across-genebank predictions hold the promise to improve the curation of the world's genebank collections and contribute significantly to the long-term development of traditional genebanks toward biodigital resource centers.

14.
Plant J ; 116(6): 1667-1680, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37682777

RÉSUMÉ

Eggplant (Solanum melongena) is an important Solanaceous crop, widely cultivated and consumed in Asia, the Mediterranean basin, and Southeast Europe. Its domestication centers and migration and diversification routes are still a matter of debate. We report the largest georeferenced and genotyped collection to this date for eggplant and its wild relatives, consisting of 3499 accessions from seven worldwide genebanks, originating from 105 countries in five continents. The combination of genotypic and passport data points to the existence of at least two main centers of domestication, in Southeast Asia and the Indian subcontinent, with limited genetic exchange between them. The wild and weedy eggplant ancestor S. insanum shows admixture with domesticated S. melongena, similar to what was described for other fruit-bearing Solanaceous crops such as tomato and pepper and their wild ancestors. After domestication, migration and admixture of eggplant populations from different regions have been less conspicuous with respect to tomato and pepper, thus better preserving 'local' phenotypic characteristics. The data allowed the identification of misclassified and putatively duplicated accessions, facilitating genebank management. All the genetic, phenotypic, and passport data have been deposited in the Open Access G2P-SOL database, and constitute an invaluable resource for understanding the domestication, migration and diversification of this cosmopolitan vegetable.


Sujet(s)
Solanum lycopersicum , Solanum melongena , Solanum melongena/génétique , Domestication , Fruit/génétique , Asie
15.
Plant J ; 116(5): 1508-1528, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37602679

RÉSUMÉ

Investigating crop diversity through genome-wide association studies (GWAS) on core collections helps in deciphering the genetic determinants of complex quantitative traits. Using the G2P-SOL project world collection of 10 038 wild and cultivated Capsicum accessions from 10 major genebanks, we assembled a core collection of 423 accessions representing the known genetic diversity. Since complex traits are often highly dependent upon environmental variables and genotype-by-environment (G × E) interactions, multi-environment GWAS with a 10 195-marker genotypic matrix were conducted on a highly diverse subset of 350 Capsicum annuum accessions, extensively phenotyped in up to six independent trials from five climatically differing countries. Environment-specific and multi-environment quantitative trait loci (QTLs) were detected for 23 diverse agronomic traits. We identified 97 candidate genes potentially implicated in 53 of the most robust and high-confidence QTLs for fruit flavor, color, size, and shape traits, and for plant productivity, vigor, and earliness traits. Investigating the genetic architecture of agronomic traits in this way will assist the development of genetic markers and pave the way for marker-assisted selection. The G2P-SOL pepper core collection will be available upon request as a unique and universal resource for further exploitation in future gene discovery and marker-assisted breeding efforts by the pepper community.


Sujet(s)
Capsicum , Locus de caractère quantitatif , Locus de caractère quantitatif/génétique , Capsicum/génétique , Étude d'association pangénomique , Amélioration des plantes , Phénotype , Légumes/génétique
16.
Plant Biotechnol J ; 21(12): 2426-2432, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37549196

RÉSUMÉ

Professor Andreas Graner stands as a towering figure in international crop plant genomics research, leaving an indelible imprint on the field over the past four decades. As we commemorate the 80th anniversary of Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany and Professor Graner's retirement in September 2023, here we celebrate and acknowledge his profound impact on crop genome analyses and genebank genomics. His trailblazing work extends from developing the first integrated RFLP map of barley, establishing the foundation of barley genome sequencing, and advancing functional genomics of malting quality, to pioneering the use of high-throughput phenomics. As the dedicated custodian of Germany's largest ex situ genebank at IPK Gatersleben, Professor Graner has fortified the institution's collection management and crop research, thereby contributing significantly to global efforts on conservation and utilization of plant genetic resources through genomics approaches. Alongside his impressive array of scientific achievements, Professor Graner's inspiring mentorship has nurtured a new generation of scientists, including us, leaving a lasting legacy in the field. This tribute underscores his enduring influence and celebrates his unwavering dedication to the scientific community.


Sujet(s)
Produits agricoles , Amélioration des plantes , Produits agricoles/génétique , Génome végétal/génétique , Génomique
17.
Int J Mol Sci ; 24(15)2023 Jul 27.
Article de Anglais | MEDLINE | ID: mdl-37569441

RÉSUMÉ

Plants respond to drought by the major reprogramming of gene expression, enabling the plant to survive this threatening environmental condition. The phytohormone abscisic acid (ABA) serves as a crucial upstream signal, inducing this multifaceted process. This report investigated the drought response in barley plants (Hordeum vulgare, cv. Morex) at both the epigenome and transcriptome levels. After a ten-day drought period, during which the soil water content was reduced by about 35%, the relative chlorophyll content, as well as the photosystem II efficiency of the barley leaves, decreased by about 10%. Furthermore, drought-related genes such as HvS40 and HvA1 were already induced compared to the well-watered controls. Global ChIP-Seq analysis was performed to identify genes in which histones H3 were modified with euchromatic K4 trimethylation or K9 acetylation during drought. By applying stringent exclusion criteria, 129 genes loaded with H3K4me3 and 2008 genes loaded with H3K9ac in response to drought were identified, indicating that H3K9 acetylation reacts to drought more sensitively than H3K4 trimethylation. A comparison with differentially expressed genes enabled the identification of specific genes loaded with the euchromatic marks and induced in response to drought treatment. The results revealed that a major proportion of these genes are involved in ABA signaling and related pathways. Intriguingly, two members of the protein phosphatase 2C family (PP2Cs), which play a crucial role in the central regulatory machinery of ABA signaling, were also identified through this approach.


Sujet(s)
Hordeum , Hordeum/métabolisme , Acide abscissique/pharmacologie , Acide abscissique/métabolisme , Code histone , Sécheresses , Transcriptome , Régulation de l'expression des gènes végétaux , Protéines végétales/génétique , Protéines végétales/métabolisme , Stress physiologique/génétique
18.
Theor Appl Genet ; 136(8): 174, 2023 Jul 21.
Article de Anglais | MEDLINE | ID: mdl-37477711

RÉSUMÉ

KEY MESSAGE: Selection over 70 years has led to almost complete fixation of a haplotype spanning ~ 250 Mbp of chomosome 5H in European two-rowed spring barleys, possibly originating from North Africa. Plant breeding and selection have shaped the genetic composition of modern crops over the past decades and centuries and have led to great improvements in agronomic and quality traits. Knowledge of the genetic composition of breeding germplasm is essential to make informed decisions in breeding programs. In this study, we characterized the structure and composition of 209 barley cultivars representative of the European two-rowed spring barley germplasm of the past 190 years. Utilizing high-density SNP marker data, we identified a distinct centromeric haplotype spanning a ~ 250 Mbp large region on chromosome 5H which likely was first introduced into the European breeding germplasm in the early to mid-twentieth century and has been non-recombining and under strong positive selection over the past 70 years. Almost all cultivars in our panel that were released after 2000 carry this new haplotype, suggesting that this region carries one or several genes conferring highly beneficial traits. Using the global barley collection of the German Federal ex situ gene bank at IPK Gatersleben, we found the new haplotype at high frequencies in six-rowed spring-type landraces from Northern Africa, from which it may have been introduced into modern European barley germplasm via southern European landraces. The presence of a 250 Mbp genomic region characterized by lack of recombination and high levels of fixation in modern barley germplasm has substantial implications for the genetic diversity of the modern barley germplasm and for barley breeding.


Sujet(s)
Hordeum , Haplotypes , Hordeum/génétique , Amélioration des plantes , Phénotype , Chromosomes
19.
Nature ; 615(7953): 652-659, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36890232

RÉSUMÉ

Increasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emissions and loss of biodiversity1. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value2. Faba bean (Vicia faba L.) has a high yield potential and is well suited for cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-quality chromosome-scale assembly of the faba bean genome and show that it has expanded to a massive 13 Gb in size through an imbalance between the rates of amplification and elimination of retrotransposons and satellite repeats. Genes and recombination events are evenly dispersed across chromosomes and the gene space is remarkably compact considering the genome size, although with substantial copy number variation driven by tandem duplication. Demonstrating practical application of the genome sequence, we develop a targeted genotyping assay and use high-resolution genome-wide association analysis to dissect the genetic basis of seed size and hilum colour. The resources presented constitute a genomics-based breeding platform for faba bean, enabling breeders and geneticists to accelerate the improvement of sustainable protein production across the Mediterranean, subtropical and northern temperate agroecological zones.


Sujet(s)
Produits agricoles , Diploïdie , Variation génétique , Génome végétal , Génomique , Amélioration des plantes , Protéines végétales , Vicia faba , Chromosomes de plante/génétique , Produits agricoles/génétique , Produits agricoles/métabolisme , Variations de nombre de copies de segment d'ADN/génétique , ADN satellite/génétique , Amplification de gène/génétique , Gènes de plante/génétique , Variation génétique/génétique , Génome végétal/génétique , Étude d'association pangénomique , Géographie , Amélioration des plantes/méthodes , Protéines végétales/génétique , Protéines végétales/métabolisme , Recombinaison génétique , Rétroéléments/génétique , Graines/anatomie et histologie , Graines/génétique , Vicia faba/anatomie et histologie , Vicia faba/génétique , Vicia faba/métabolisme
20.
Sci Adv ; 9(9): eadd0324, 2023 03 03.
Article de Anglais | MEDLINE | ID: mdl-36867700

RÉSUMÉ

Flowering plants with indeterminate inflorescences often produce more floral structures than they require. We found that floral primordia initiations in barley (Hordeum vulgare L.) are molecularly decoupled from their maturation into grains. While initiation is dominated by flowering-time genes, floral growth is specified by light signaling, chloroplast, and vascular developmental programs orchestrated by barley CCT MOTIF FAMILY 4 (HvCMF4), which is expressed in the inflorescence vasculature. Consequently, mutations in HvCMF4 increase primordia death and pollination failure, mainly through reducing rachis greening and limiting plastidial energy supply to developing heterotrophic floral tissues. We propose that HvCMF4 is a sensory factor for light that acts in connection with the vascular-localized circadian clock to coordinate floral initiation and survival. Notably, stacking beneficial alleles for both primordia number and survival provides positive implications on grain production. Our findings provide insights into the molecular underpinnings of grain number determination in cereal crops.


Sujet(s)
Grains comestibles , Hordeum , Produits agricoles , Allèles , Chloroplastes
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE