Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
High Alt Med Biol ; 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39082190

RÉSUMÉ

Reid, Ly-Anh, Jordan L Rees, Miranda Kimber, Marina James, Graeme M Purdy, Megan Smorschok, Lauren E Maier, Normand G. Boulé, Trevor A. Day, Margie H. Davenport, and Craig D. Steinback. Blood glucose during high altitude trekking in young healthy adults. High Alt Med Biol. 00:00-00, 2024. Introduction: High altitude trekking is becoming more popular and accessible to an increased number of people. Simultaneously, there is a worldwide rise in the prevalence of metabolic diseases. The purpose of this study was to examine the impact of a gradual trekking ascent to high altitude on continuous glucose monitoring outcomes including fasting, mean 24-hour, postprandial, and post-75 g modified oral glucose tolerance test. This study also investigated the relationship between physical activity intensity, high altitude, and glucose concentrations. Methods: Individuals (n = 9) from Alberta, Canada participated in a 2-week trek in the Khumbu Valley in Nepal, ascending by foot from 2,860 m to 5,300 m (∼65 km) over 10 days. A standardized 75 g oral glucose load was given to participants at four different altitudes (1,130 m, 3,440 m, 3,820 m, 5,160 m). Physical activity (Actigraph accelerometry) and interstitial glucose (iPro2, Medtronic) were measured continuously during the trek. Results: Fasting and mean 24-hour glucose concentrations were not different between altitudes. However, 2-hour post dinner glucose and 2-hour post lunch glucose, AUC concentrations were different between altitudes. The relationship between physical activity intensity and glucose was not influenced by increasing altitudes. Conclusion: Our findings suggest that glucose regulation is largely preserved at high altitude; however, inconsistency in our postprandial glucose concentrations at altitude warrants further investigation.

2.
Physiol Rep ; 12(11): e16054, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38872580

RÉSUMÉ

We aimed to determine the relative contribution of hypercapnia and hypoxia to the bradycardic response to apneas. We hypothesized that apneas with hypercapnia would cause greater bradycardia than normoxia, similar to the response seen with hypoxia, and that apneas with hypercapnic hypoxia would induce greater bradycardia than hypoxia or hypercapnia alone. Twenty-six healthy participants (12 females; 23 ± 2 years; BMI 24 ± 3 kg/m2) underwent three gas challenges: hypercapnia (+5 torr end tidal partial pressure of CO2 [PETCO2]), hypoxia (50 torr end tidal partial pressure of O2 [PETO2]), and hypercapnic hypoxia (combined hypercapnia and hypoxia), with each condition interspersed with normocapnic normoxia. Heart rate and rhythm, blood pressure, PETCO2, PETO2, and oxygen saturation were measured continuously. Hypercapnic hypoxic apneas induced larger bradycardia (-19 ± 16 bpm) than normocapnic normoxic apneas (-11 ± 15 bpm; p = 0.002), but had a comparable response to hypoxic (-19 ± 15 bpm; p = 0.999) and hypercapnic apneas (-14 ± 14 bpm; p = 0.059). Hypercapnic apneas were not different from normocapnic normoxic apneas (p = 0.134). After removal of the normocapnic normoxic heart rate response, the change in heart rate during hypercapnic hypoxia (-11 ± 16 bpm) was similar to the summed change during hypercapnia+hypoxia (-9 ± 10 bpm; p = 0.485). Only hypoxia contributed to this bradycardic response. Under apneic conditions, the cardiac response is driven by hypoxia.


Sujet(s)
Apnée , Bradycardie , Rythme cardiaque , Hypercapnie , Hypoxie , Humains , Hypercapnie/physiopathologie , Femelle , Mâle , Rythme cardiaque/physiologie , Hypoxie/physiopathologie , Apnée/physiopathologie , Adulte , Bradycardie/physiopathologie , Jeune adulte , Pression sanguine/physiologie , Dioxyde de carbone/métabolisme
3.
Clin Auton Res ; 34(2): 233-252, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38709357

RÉSUMÉ

PURPOSE: We conducted a meta-analysis to determine the effect of hyperoxia on muscle sympathetic nerve activity in healthy individuals and those with cardio-metabolic diseases. METHODS: A comprehensive search of electronic databases was performed until August 2022. All study designs (except reviews) were included: population (humans; apparently healthy or with at least one chronic disease); exposures (muscle sympathetic nerve activity during hyperoxia or hyperbaria); comparators (hyperoxia or hyperbaria vs. normoxia); and outcomes (muscle sympathetic nerve activity, heart rate, blood pressure, minute ventilation). Forty-nine studies were ultimately included in the meta-analysis. RESULTS: In healthy individuals, hyperoxia had no effect on sympathetic burst frequency (mean difference [MD] - 1.07 bursts/min; 95% confidence interval [CI] - 2.17, 0.04bursts/min; P = 0.06), burst incidence (MD 0.27 bursts/100 heartbeats [hb]; 95% CI - 2.10, 2.64 bursts/100 hb; P = 0.82), burst amplitude (P = 0.85), or total activity (P = 0.31). In those with chronic diseases, hyperoxia decreased burst frequency (MD - 5.57 bursts/min; 95% CI - 7.48, - 3.67 bursts/min; P < 0.001) and burst incidence (MD - 4.44 bursts/100 hb; 95% CI - 7.94, - 0.94 bursts/100 hb; P = 0.01), but had no effect on burst amplitude (P = 0.36) or total activity (P = 0.90). Our meta-regression analyses identified an inverse relationship between normoxic burst frequency and change in burst frequency with hyperoxia. In both groups, hyperoxia decreased heart rate but had no effect on any measure of blood pressure. CONCLUSION: Hyperoxia does not change sympathetic activity in healthy humans. Conversely, in those with chronic diseases, hyperoxia decreases sympathetic activity. Regardless of disease status, resting sympathetic burst frequency predicts the degree of change in burst frequency, with larger decreases for those with higher resting activity.


Sujet(s)
Hyperoxie , Muscles squelettiques , Système nerveux sympathique , Humains , Hyperoxie/physiopathologie , Système nerveux sympathique/physiologie , Système nerveux sympathique/physiopathologie , Muscles squelettiques/physiologie , Muscles squelettiques/innervation , Rythme cardiaque/physiologie
4.
J Appl Physiol (1985) ; 137(2): 429-444, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38752285

RÉSUMÉ

The purpose of this systematic review and meta-analysis was to examine the effects of exercise training on muscle sympathetic nerve activity (MSNA) in humans. Studies included exercise interventions [randomized controlled trials (RCTs), nonrandomized controlled trials (non-RCTs), or pre-to-post intervention] that reported on adults (≥18 yr) where MSNA was directly assessed using microneurography, and relevant outcomes were assessed [MSNA (total activity, burst frequency, burst incidence, amplitude), heart rate, blood pressure (systolic blood pressure, diastolic blood pressure, or mean blood pressure), and aerobic capacity (maximal or peak oxygen consumption)]. Forty intervention studies (n = 1,253 individuals) were included. RCTs of exercise compared with no exercise illustrated that those randomized to the exercise intervention had a significant reduction in MSNA burst frequency and incidence compared with controls. This reduction in burst frequency was not different between individuals with cardiovascular disease compared with those without. However, the reduction in burst incidence was greater in those with cardiovascular disease [9 RCTs studies, n = 234, mean difference (MD) -21.08 bursts/100 hbs; 95% confidence interval (CI) -16.51, -25.66; I2 = 63%] compared with those without (6 RCTs, n = 192, MD -10.92 bursts/100 hbs; 95% CI -4.12, -17.73; I2 = 76%). Meta-regression analyses demonstrated a dose-response relationship where individuals with higher burst frequency and incidence preintervention had a greater reduction in values post-intervention. These findings suggest that exercise training reduces muscle sympathetic nerve activity, which may be valuable for improving cardiovascular health.NEW & NOTEWORTHY This systematic review and meta-analysis suggests exercise training reduces muscle sympathetic nerve activity (MSNA), which may be valuable for improving cardiovascular health. The reduction in burst incidence was greater among individuals with cardiovascular disease when compared with those without; exercise training may be particularly beneficial for individuals with cardiovascular disease. Meta-regression analyses demonstrated a dose-response relationship, where individuals with higher sympathetic activity preintervention had greater reductions in sympathetic activity post-intervention.


Sujet(s)
Pression sanguine , Exercice physique , Muscles squelettiques , Système nerveux sympathique , Humains , Système nerveux sympathique/physiologie , Muscles squelettiques/physiologie , Muscles squelettiques/innervation , Exercice physique/physiologie , Pression sanguine/physiologie , Rythme cardiaque/physiologie , Consommation d'oxygène/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE