Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Skelet Muscle ; 14(1): 11, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38769542

RÉSUMÉ

BACKGROUND: Myotonic Dystrophy type I (DM1) is the most common muscular dystrophy in adults. Previous reports have highlighted that neuromuscular junctions (NMJs) deteriorate in skeletal muscle from DM1 patients and mouse models thereof. However, the underlying pathomechanisms and their contribution to muscle dysfunction remain unknown. METHODS: We compared changes in NMJs and activity-dependent signalling pathways in HSALR and Mbnl1ΔE3/ΔE3 mice, two established mouse models of DM1. RESULTS: Muscle from DM1 mouse models showed major deregulation of calcium/calmodulin-dependent protein kinases II (CaMKIIs), which are key activity sensors regulating synaptic gene expression and acetylcholine receptor (AChR) recycling at the NMJ. Both mouse models exhibited increased fragmentation of the endplate, which preceded muscle degeneration. Endplate fragmentation was not accompanied by changes in AChR turnover at the NMJ. However, the expression of synaptic genes was up-regulated in mutant innervated muscle, together with an abnormal accumulation of histone deacetylase 4 (HDAC4), a known target of CaMKII. Interestingly, denervation-induced increase in synaptic gene expression and AChR turnover was hampered in DM1 muscle. Importantly, CaMKIIß/ßM overexpression normalized endplate fragmentation and synaptic gene expression in innervated Mbnl1ΔE3/ΔE3 muscle, but it did not restore denervation-induced synaptic gene up-regulation. CONCLUSIONS: Our results indicate that CaMKIIß-dependent and -independent mechanisms perturb synaptic gene regulation and muscle response to denervation in DM1 mouse models. Changes in these signalling pathways may contribute to NMJ destabilization and muscle dysfunction in DM1 patients.


Sujet(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Modèles animaux de maladie humaine , Muscles squelettiques , Dystrophie myotonique , Jonction neuromusculaire , Dystrophie myotonique/génétique , Dystrophie myotonique/métabolisme , Dystrophie myotonique/physiopathologie , Animaux , Calcium-Calmodulin-Dependent Protein Kinase Type 2/métabolisme , Calcium-Calmodulin-Dependent Protein Kinase Type 2/génétique , Jonction neuromusculaire/métabolisme , Muscles squelettiques/métabolisme , Muscles squelettiques/innervation , Muscles squelettiques/anatomopathologie , Souris , Humains , Histone deacetylases/métabolisme , Histone deacetylases/génétique , Récepteurs cholinergiques/métabolisme , Récepteurs cholinergiques/génétique , Mâle , Souris de lignée C57BL
2.
FASEB J ; 34(3): 4573-4590, 2020 03.
Article de Anglais | MEDLINE | ID: mdl-32020675

RÉSUMÉ

Aberrant expression of the transcription factor double homeobox protein 4 (DUX4) can lead to a number of diseases including facio-scapulo-humeral muscular dystrophy (FSHD), acute lymphoblastic leukemia, and sarcomas. Inhibition of DUX4 may represent a therapeutic strategy for these diseases. By applying Systematic Evolution of Ligands by EXponential Enrichment (SELEX), we identified aptamers against DUX4 with specific secondary structural elements conveying high affinity to DUX4 as assessed by fluorescence resonance energy transfer and fluorescence polarization techniques. Sequences analysis of these aptamers revealed the presence of two consensus DUX4 motifs in a reverse complementary fashion forming hairpins interspersed with bulge loops at distinct positions that enlarged the binding surface with the DUX4 protein, as determined by crystal structure analysis. We demonstrate that insertion of specific structural elements into transcription factor binding oligonucleotides can enhance specificity and affinity.


Sujet(s)
Aptamères nucléotidiques/composition chimique , Protéines à homéodomaine/métabolisme , Dystrophie musculaire facio-scapulo-humérale/métabolisme , Technique SELEX/méthodes , Protéines à homéodomaine/composition chimique , Protéines à homéodomaine/génétique , Humains , Mâle , Modèles moléculaires , Facteur de transcription PAX7/composition chimique , Facteur de transcription PAX7/génétique , Facteur de transcription PAX7/métabolisme
3.
J Biol Chem ; 291(33): 17165-77, 2016 08 12.
Article de Anglais | MEDLINE | ID: mdl-27298317

RÉSUMÉ

Myotonic dystrophy type I (DM1) is a disabling neuromuscular disease with no causal treatment available. This disease is caused by expanded CTG trinucleotide repeats in the 3' UTR of the dystrophia myotonica protein kinase gene. On the RNA level, expanded (CUG)n repeats form hairpin structures that sequester splicing factors such as muscleblind-like 1 (MBNL1). Lack of available MBNL1 leads to misregulated alternative splicing of many target pre-mRNAs, leading to the multisystemic symptoms in DM1. Many studies aiming to identify small molecules that target the (CUG)n-MBNL1 complex focused on synthetic molecules. In an effort to identify new small molecules that liberate sequestered MBNL1 from (CUG)n RNA, we focused specifically on small molecules of natural origin. Natural products remain an important source for drugs and play a significant role in providing novel leads and pharmacophores for medicinal chemistry. In a new DM1 mechanism-based biochemical assay, we screened a collection of isolated natural compounds and a library of over 2100 extracts from plants and fungal strains. HPLC-based activity profiling in combination with spectroscopic methods were used to identify the active principles in the extracts. The bioactivity of the identified compounds was investigated in a human cell model and in a mouse model of DM1. We identified several alkaloids, including the ß-carboline harmine and the isoquinoline berberine, that ameliorated certain aspects of the DM1 pathology in these models. Alkaloids as a compound class may have potential for drug discovery in other RNA-mediated diseases.


Sujet(s)
Régions 3' non traduites , Alcaloïdes/pharmacologie , Protéines de liaison à l'ADN , Modèles biologiques , Dystrophie myotonique/traitement médicamenteux , Protéines de liaison à l'ARN , Expansion de trinucléotide répété , Alcaloïdes/composition chimique , Alcaloïdes/isolement et purification , Épissage alternatif/effets des médicaments et des substances chimiques , Animaux , Lignée cellulaire , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Évaluation préclinique de médicament/méthodes , Humains , Souris , Dystrophie myotonique/génétique , Dystrophie myotonique/métabolisme , Dystrophie myotonique/anatomopathologie , Protéines de liaison à l'ARN/génétique , Protéines de liaison à l'ARN/métabolisme
4.
Neuron ; 78(6): 1012-23, 2013 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-23791195

RÉSUMÉ

Structure and function of presynaptic terminals are critical for the transmission and processing of neuronal signals. Trans-synaptic signaling systems instruct the differentiation and function of presynaptic release sites, but their downstream mediators are only beginning to be understood. Here, we identify the intracellular mSYD1A (mouse Synapse-Defective-1A) as a regulator of presynaptic function in mice. mSYD1A forms a complex with presynaptic receptor tyrosine phosphatases and controls tethering of synaptic vesicles at synapses. mSYD1A function relies on an intrinsically disordered domain that interacts with multiple structurally unrelated binding partners, including the active zone protein liprin-α2 and nsec1/munc18-1. In mSYD1A knockout mice, synapses assemble in normal numbers but there is a significant reduction in synaptic vesicle docking at the active zone and an impairment of synaptic transmission. Thus, mSYD1A is a regulator of presynaptic release sites at central synapses.


Sujet(s)
Terminaisons présynaptiques/métabolisme , Transduction du signal/physiologie , Synapses/métabolisme , Vésicules synaptiques/métabolisme , Protéines G rho/physiologie , Séquence d'acides aminés , Animaux , Animaux nouveau-nés , Cellules COS , Cellules cultivées , Chlorocebus aethiops , Cellules HEK293 , Humains , Souris , Souris knockout , Données de séquences moléculaires , Protéines de tissu nerveux/physiologie , Techniques de culture d'organes , Liaison aux protéines/physiologie , Synapses/génétique , Vésicules synaptiques/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE