Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 135
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Sci Adv ; 6(26): eaba5778, 2020 Jun.
Article de Anglais | MEDLINE | ID: mdl-32637613

RÉSUMÉ

Borocarbonitrides (BCNs) have emerged as highly selective catalysts for the oxidative dehydrogenation (ODH) reaction. However, there is a lack of in-depth understanding of the catalytic mechanism over BCN catalysts due to the complexity of the surface oxygen functional groups. Here, BCN nanotubes with multiple active sites are synthesized for oxygen-assisted methanol conversion reaction. The catalyst shows a notable activity improvement for methanol conversion (29%) with excellent selectivity to formaldehyde (54%). Kinetic measurements indicate that carboxylic acid groups on BCN are responsible for the formation of dimethyl ether, while the redox catalysis to formaldehyde occurs on both ketonic carbonyl and boron hydroxyl (B─OH) sites. The ODH reaction pathway on the B─OH site is further revealed by in situ infrared, x-ray absorption spectra, and density functional theory. The present work provides physical-chemical insights into the functional mechanism of BCN catalysts, paving the way for further development of the underexplored nonmetallic catalytic systems.

2.
ACS Appl Mater Interfaces ; 11(47): 44118-44123, 2019 Nov 27.
Article de Anglais | MEDLINE | ID: mdl-31682102

RÉSUMÉ

Activity and immobilization of catalysts in liquid-phase reactions seem not to coexist. We report here the excellent activity of an MoOx nanoparticle (NP) catalyst for d-glucose epimerization to d-mannose and the electrical immobilization of NPs in a flow reaction. Prior to that, a green and one-pot method to synthesize the MoOx NPs (3.05 nm) via oxidizing metal Mo by hydrogen peroxide was presented. The NPs overwhelmed the reported catalysts including epimerase for d-glucose epimerization, originating from a strong interaction between the NPs and the reactant that was demonstrated by ex situ and in situ characterizations and theoretical calculations. The electrically charged feature of NPs inspired us to find a convenient way to "immobilize" them inside an activated carbon bed, and thereby, a flow reactor was assembled. The continuous epimerization was run under 24 V for 16 days with an almost unchanged activity, and only 3.2% of total Mo was lost.

3.
ACS Nano ; 13(12): 13995-14004, 2019 Dec 24.
Article de Anglais | MEDLINE | ID: mdl-31765120

RÉSUMÉ

Nitrogen (N)-doped nanocarbons (NDN) as metal-free catalysts have elicited considerable attention toward selective oxidation of alcohols with easily oxidizable groups to aldehydes in the past few years. However, finding a new NDN catalytic material that can meet the requirement of the feasibility on the aerobic catalytics for other complicated alcohols is a big challenge. The real active sites and the corresponding mechanisms on NDN are still unambiguous because of inevitable coexistence of diverse edge sites and N species based on recently reported doping methods. Here, four NDN catalysts with enriched pyridinic N species and without any graphitic N species are simply fabricated via a chemical-vapor-deposition-like method. The results of X-ray photoelectron spectroscopy and X-ray absorption near-edge structure spectra suggest that the dominating N species on NDN are pyridinic N. It is demonstrated that NDN catalysts perform impressive reactivity for aerobic oxidation of complicated alcohols at an atmospheric pressure. Eleven kinds of aromatic molecules with single N species and tunable π conjugation systems are used as model catalysts to experimentally identify the actual role of each N species at a real molecular level. It is suggested that pyridinic N species play an unexpected role in catalytic reactions. Neighboring carbon atoms in pyridinic N species are responsible for facilitating the rate-determining step process clarified by kinetic isotope effects, in situ nuclear magnetic resonance, in situ attenuated total reflectance infrared, and theoretical calculation. Moreover, NDN catalysts exhibit a good catalytic feasibility on the synthesis of important natural products (e.g., intermediates of vitamin E and K3) from phenol oxidation.

4.
ACS Appl Mater Interfaces ; 11(38): 35468-35478, 2019 Sep 25.
Article de Anglais | MEDLINE | ID: mdl-31483599

RÉSUMÉ

Supported gold nanoparticles with sizes below 5 nm display attractive catalytic activities for heterogeneous reactions, particularly those promoted by secondary metal (e.g., Cu) because of the well-defined synergy between metal compositions. However, the specific atomic structure at interfaces is less interpreted systematically. In this work, various bimetallic Au-CuOx catalysts with specific surface structures were synthesized and explored by aberration-corrected scanning transmission electron microscopy (AC-STEM), temperature-programmed experiments and in situ DRIFT experiments. Results suggest that the atomic structure and interfaces between gold and CuOx are determined by the nucleation behaviors of the nanoparticles and result in subsequently the distinctive ability for CO activation. Bimetallic CuO*/Au sample formatted by gold particles surrounded with CuOx nanoclusters have rough surface with prominently exposed low-coordinated Au step defects. Whereas the bimetallic Au@CuO sample formatted by copper precursor in the presence of gold nanoparticles have core-shell structure with relatively smooth surface. The former structure of CuO*/Au displays much accelerated properties for CO adsorption and activation with 90% CO converted to CO2 at 90 °C and nice stability with time on stream. The results clearly determine from atomic scale the significance of exposed gold step sites and intrinsic formation of defected surface by different nucleation. The above properties are directly responsible for the induced variation in chemical composition and the catalytic activity.

5.
J Am Chem Soc ; 141(7): 2975-2983, 2019 Feb 20.
Article de Anglais | MEDLINE | ID: mdl-30677301

RÉSUMÉ

Classical strong metal-support interactions (SMSI), which play a crucial role in the preparation of supported metal nanoparticle catalysts, is one of the most important concepts in heterogeneous catalysis. The conventional wisdom for construction of classical SMSI involves in redox treatments at high-temperatures by molecular oxygen or hydrogen, sometimes causing sintered metal nanoparticles before SMSI formation. Herein, we report that the aforementioned issue can be effectively avoided by a wet-chemistry methodology. As a typical example, we demonstrate a new concept of wet-chemistry SMSI (wcSMSI) that can be constructed on titania-supported Au nanoparticles (Au/TiO2-wcSMSI), where the key is to employ a redox interaction between Auδ+ and Ti3+ precursors in aqueous solution. The wcSMSI is evidenced by covering Au nanoparticles with the TiO x overlayer, electronic interaction between Au and TiO2, and suppression of CO adsorption on Au nanoparticles. Owing to the wcSMSI, the Au-TiO x interface with an improved redox property is favorable for oxygen activation, accelerating CO oxidation. In addition, the oxide overlayer efficiently stabilizes the Au nanoparticles, achieving sinter-resistant Au/TiO2-wcSMSI catalyst in CO oxidation.

6.
Angew Chem Int Ed Engl ; 58(13): 4232-4237, 2019 Mar 22.
Article de Anglais | MEDLINE | ID: mdl-30650222

RÉSUMÉ

Controllable synthesis of well-defined supported intermetallic catalysts is desirable because of their unique properties in physical chemistry. To accurately pinpoint the evolution of such materials at an atomic-scale, especially clarification of the initial state under a particular chemical environment, will facilitate rational design and optimal synthesis of such catalysts. The dynamic formation of a ZnO-supported PdZn catalyst is presented, whereby detailed analyses of in situ transmission electron microscopy, electron energy-loss spectroscopy, and in situ X-ray diffraction are combined to form a nanoscale understanding of PdZn phase transitions under realistic catalytic conditions. Remarkably, introduction of atoms (H and Zn in sequence) into the Pd matrix was initially observed. The resultant PdHx is an intermediate phase in the intermetallic formation process. The evolution of PdHx in the PdZn catalyst initializes at the PdHx /ZnO interfaces, and proceeds along the PdHx ⟨111⟩ direction.

7.
ACS Appl Mater Interfaces ; 11(1): 706-713, 2019 Jan 09.
Article de Anglais | MEDLINE | ID: mdl-30499295

RÉSUMÉ

The interface at the metal oxide-carbon hybrid heterojunction is the source to the well-known "synergistic effect" in catalysis. Understanding the structure-function properties is key for designing more advanced catalyst-support systems. Using a model MnIII-O x single-layer catalyst on carbon, we herein report a full elucidation to the catalytic synergism at the hybrid heterojunction in the oxygen reduction reaction (ORR). The successful fabrication of the single-layer catalyst from bottom-up is fully characterized by the X-ray absorption fine structure and high-resolution transmission electron microscopy. For oxygen electrocatalysis over this model hybrid heterostructure, our results, from both theory and experiment, show that the synergistic ORR truly undergoes a cooperated two-step electrocatalysis with catalytic promotion (Δ Eonset = 60 mV) near the heterojunction and over the single-layer catalyst through an interfacial electronic interplay, rather than an abstruse transition towards a one-step dissociative pathway. Finally, we report a superior peroxide-reducing activity of 432.5 mA cm-2 mg(M)-1 over the MnIII-O x single-layer.

8.
Phys Chem Chem Phys ; 21(3): 1019-1022, 2019 Jan 17.
Article de Anglais | MEDLINE | ID: mdl-30565604

RÉSUMÉ

A zigzag-type quinone performs better than an armchair-type quinone in the reduction of nitrobenzene. When different kinds of functionalities co-exist, the reaction is dominated by the most active sites, but the most negative sites should also be taken into consideration if the acitive sites have zigzag structures.

9.
Chem Soc Rev ; 47(22): 8438-8473, 2018 Nov 12.
Article de Anglais | MEDLINE | ID: mdl-30371710

RÉSUMÉ

Hybrid sp2/sp3 nanocarbons, in particular sp3-hybridized ultra-dispersed nanodiamonds and derivative materials, such as the sp3/sp2-hybridized bucky nanodiamonds and sp2-hybridized onion-like carbons, represent a rather interesting class of catalysts still under consideration. Their characteristics, properties and catalytic reactivity are presented, with an analysis of the state-of-the-art of their use in gas- and liquid-phase reactions, including photo- and electro-catalysis. It is remarked that intrinsic differences exist between these and other nanostructured carbon catalysts. The analysis shows how different features make nanocarbons unique with respect to other types of catalysts and are the bases for an advanced design of nanocarbon-type catalysts. The aspects discussed regard the presence of hybrid sp2/sp3 configurations, nano-engineering related to the role of defects and vacancies in their catalytic behaviour, the creation of active sites by modification in the charge density at carbon atoms or C-C bonds, the generation of strained C-C bonds by curvature and other mechanisms, and the formation of semiconducting areas and defect sites at the interface with supported nanoparticles. The advanced strategies for identifying and quantifying active sites of carbon catalysts are highlighted.

10.
Angew Chem Int Ed Engl ; 57(51): 16898-16902, 2018 12 17.
Article de Anglais | MEDLINE | ID: mdl-30362651

RÉSUMÉ

N-doped graphene-like layered carbon (NG) could be synthesized via a metal-free pyrolysis route from glucose, fructose, and 5-hydroxymethylfurfural (5-HMF), which are cheap and widely available biomass or biomass derivatives. A well-developed thin-layer structure with large lateral dimensions could be obtained when 5-HMF was used as the precursor. More importantly, the 5-HMF-derived NG gave superior performance in epoxidation reactions compared with the conventional carbon catalysts and the performance of 5-HMF derived NG was even similar to that of a cobalt catalyst. Characterizations by TEM and XPS accompanied by EPR analysis revealed that the enhanced catalytic properties for NG arise from its high activation ability for both alkenes and O2 , which are attributed to the graphitic layered structure and graphitic N species, respectively.

11.
Chem Commun (Camb) ; 54(79): 11168-11171, 2018 Oct 02.
Article de Anglais | MEDLINE | ID: mdl-30229257

RÉSUMÉ

Platinum nanoparticles (Pt NPs) immobilized on a N-doped graphene@Al2O3 hybrid support (Al2O3@CNx) were synthesized and employed for low temperature CO oxidation. The superior catalytic activity was attributed to a strong metal-support interaction between Pt NPs and the N-doped graphene surface which was also confirmed in the direct dehydrogenation reaction.

12.
Nanoscale ; 10(29): 14207-14219, 2018 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-30009309

RÉSUMÉ

Oxygenated functionalized carbon nanotube (oCNT) supported LaOx-promoted Ni nanoparticles (10Ni-xLa/oCNT) were prepared by the co-impregnation method and tested for synthetic natural gas from the CO2 reduction reaction. Several advanced characterization methods, including atomic resolution scanning transmission electron microscopy (STEM), temperature programmed experiments (TPSR, CO2-TPD, and H2-TPR) and X-ray photoelectron spectroscopy (XPS), were applied to explore, for the first time, the origin of structure modulation of LaOx species on oCNT supported Ni-LaOx hybrids and the structure-activity relationship over the CO2 reduction reaction. The Z-contrast STEM-HAADF results revealed that the LaOx species are mostly in the size of the sub-nano scale and highly dispersed on the surface of Ni nanoparticles and oCNT, and consequently no diffraction peak of LaOx was observed from XRD results. TEM analysis showed that the Ni nanoparticle sizes were similar among all samples either after reduction or after reaction due to the relatively strong interaction between Ni and oxygenated groups on CNT supports, regardless of the influence of the La mass loading. It was suggested that the catalytic performance trend was due to the structural variation rather than the size effect. The LaOx modulation catalyst with 2 wt% of La metal loading not only presented low CO2 activation temperature at only 163 °C, but also resulted in extremely high CH4 selectivity (100%) compared with the initial supported Ni catalyst (52.7% of CH4 selectivity at 300 °C).

13.
Angew Chem Int Ed Engl ; 57(42): 13800-13804, 2018 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-29864237

RÉSUMÉ

Designing heterogeneous metal-free catalysts for hydrogenation is a long-standing challenge in catalysis. Nanodiamond-based carbon materials were prepared that are surface-doped with electron-rich nitrogen and electron-deficient boron. The two heteroatoms are directly bonded to each other to form unquenched Lewis pairs with infinite π-electron donation from the surrounding graphitic structure. Remarkably, these Lewis pairs can split H2 to form H+ /H- pairs, which subsequently serve as the active species for hydrogenation of different substrates. This unprecedented finding sheds light on the uptake of H2 across carbon-based materials and suggests that dual Lewis acidity-basicity on the carbon surface may be used to heterogeneously activate a variety of small molecules.

14.
Acc Chem Res ; 51(3): 640-648, 2018 03 20.
Article de Anglais | MEDLINE | ID: mdl-29446621

RÉSUMÉ

Sustainable and environmentally benign catalytic processes are vital for the future to supply the world population with clean energy and industrial products. The replacement of conventional metal or metal oxide catalysts with earth abundant and renewable nonmetallic materials has attracted considerable research interests in the field of catalysis and material science. The stable and efficient catalytic performance of nanocarbon materials was discovered at the end of last century, and these materials are considered as potential alternatives for conventional metal-based catalysts. With its rapid development in the past 20 years, the research field of carbon catalysis has been experiencing a smooth transition from the discovery of novel nanocarbon materials or related new reaction systems to the atomistic-level mechanistic understanding on the catalytic process and the subsequent rational design of the practical catalytic reaction systems. In this Account, we summarize the recent progress in the kinetic and mechanistic studies on nanocarbon catalyzed alkane oxidative dehydrogenation (ODH) reactions. The paper attempts to extract general concepts and basic regularities for carbon catalytic process directing us on the way for rational design of novel efficient metal-free catalysts. The nature of the active sites for ODH reactions has been revealed through microcalorimetric analysis, ambient pressure X-ray photoelectron spectroscopy (XPS) measurement, and in situ chemical titration strategies. The detailed kinetic analysis and in situ catalyst structure characterization suggests that carbon catalyzed ODH reactions involve the redox cycles of the ketonic carbonyl-hydroxyl pairs, and the key physicochemical parameters (activation energy, reaction order, and rate/equilibrium constants, etc.) of the carbon catalytic systems are proposed and compared with conventional transition metal oxide catalysts. The proposal of the intrinsic catalytic activity (TOF) provides the possibility for the fair comparisons of different nanocarbon catalysts and the consequent structure-function relation regularity. Surface modification and heteroatom doping are proved as the most effective strategies to adjust the catalytic property (activity and product selectivity etc.) of the nanocarbon catalysts. Nanocarbon is actually a proper candidate platform helping us to understand the classical catalytic reaction mechanism better, since there is no lattice oxygen and all the catalytic process happens on nanocarbon surface. This Account also exhibits the importance of the in situ structural characterizations for heterogeneous nanocarbon catalysis. The research strategy and methods proposed for carbon catalysts may also shed light on other complicated catalytic systems or fields concerning the applications of nonmetallic materials, such as energy storage and environment protection etc.

15.
ChemSusChem ; 11(3): 536-541, 2018 02 09.
Article de Anglais | MEDLINE | ID: mdl-29292853

RÉSUMÉ

Activated carbon (AC) has been widely used in the catalysis field because of its low cost, scalable production, high specific surface area, and abundant exposed edge. Because of the amorphous structure, traditional AC is unstable in presence of O2 at high temperature, which hinders the application of AC catalysts in oxidative dehydrogenation (ODH) of alkanes. Here, partially graphitic AC decorated with few-layer graphene is facilely fabricated by simple high-temperature calcination. The graphitic transformation significantly enhances the antioxidation property, long-term stability of AC during the ODH reaction, and especially dramatically increases the graphitic edge areas in which the active ketonic carbonyl groups are selectively formed in ODH reactions. A high reactivity with 41.5 % selectivity and 13.2 % yield to C4 alkenes were obtained at 450 °C over the optimized catalyst, which is superior to all the previously reported carbon catalysts and shows a great potential for industrial application.


Sujet(s)
Carbone/composition chimique , Graphite/composition chimique , Butanes/composition chimique , Catalyse , Température élevée , Hydrogène/composition chimique , Hydrogénation , Métaux/composition chimique , Oxydoréduction
16.
RSC Adv ; 8(67): 38150-38156, 2018 Nov 14.
Article de Anglais | MEDLINE | ID: mdl-35559092

RÉSUMÉ

A series of sulfonated carbon materials (sulfonated glucose-derived carbon, carbon nanotubes, activated carbon and ordered mesoporous carbon, denoted as Sglu, SCNT, SAC and SCMK, respectively) were synthesized and applied as acid catalysts in phenylacetylene (PA) hydration reactions. The sulfonic acid groups (-SO3H) were identified to be the only kind of active sites and were quantified with XPS and a cation exchange process. Mechanistic studies revealed that the catalytic PA hydration reaction follows pseudo first order reaction kinetics. Sglu exhibits a higher reaction rate constant (k) and lower apparent activation energy (E a) in the hydration reactions than SCNT catalysts. NH3-temperature programmed desorption measurement results revealed that the relatively high catalytic activity of Sglu was attributed to both the stronger acidity and larger number of -SO3H active sites. This work exhibited the performance of carbon materials without any extra acidic additives in PA hydration reaction and investigated the intrinsic catalytic activity by kinetics. The present work provides the possibility for acid catalytic applications of carbon materials, which sheds light on the environmentally friendly and sustainable production strategy for aldehyde ketone compounds via the catalytic alkyne hydration reactions.

17.
Chem Commun (Camb) ; 53(95): 12750-12753, 2017 Nov 28.
Article de Anglais | MEDLINE | ID: mdl-29105712

RÉSUMÉ

Surface functionalized and defect enriched carbon nanotubes (oCNTs) by green ozone/H2O treatment can efficiently anchor gold nanoparticles. This Au/oCNT could be stabilized and well dispersed after thermal treatment and showed robust catalytic activity (20.6 mmol gcat-1 h-1) for the oxidative self-coupling of benzylamine to imine in solvent free conditions.

18.
Chem Commun (Camb) ; 53(82): 11322-11325, 2017 Oct 12.
Article de Anglais | MEDLINE | ID: mdl-28967003

RÉSUMÉ

MgO-rGO hybrid catalysts with a sandwich structure have been successfully prepared through a simple "solid-solid" method. Obviously enhanced reactivity is observed on the hybrid catalysts in ethylbenzene dehydrogenation reactions, which is attributed to the sandwich structure and the synergistic effect between MgO and rGO.

19.
ChemSusChem ; 10(17): 3497-3505, 2017 09 11.
Article de Anglais | MEDLINE | ID: mdl-28665485

RÉSUMÉ

Selective oxidation of alcohols to aldehydes is widely applicable to the synthesis of various green chemicals. The poor chemoselectivity for complicated primary aldehydes over state-of-the-art metal-free or metal-based catalysts represents a major obstacle for industrial application. Bucky nanodiamond is a potential green catalyst that exhibits excellent chemoselectivity and cycling stability for the selective oxidation of primary alcohols in diverse structures (22 examples, including aromatic, substituted aromatic, unsaturated, heterocyclic, and linear chain alcohols) to their corresponding aldehydes. The results are comparable to reported transition-metal catalysts including conventional Pt/C and Ru/C catalysts for certain substrates under solvent-free conditions. The possible activation process of the oxidant and substrates by the surface oxygen groups and defect species are revealed with model catalysts, ex situ electrochemical measurements, and ex situ attenuated total reflectance. The zigzag edges of sp2 carbon planes are shown to play a key role in these reactions.


Sujet(s)
Alcools/composition chimique , Aldéhydes/composition chimique , Nanodiamants/composition chimique , Solvants/composition chimique , Catalyse , Oxydants/composition chimique , Oxydoréduction , Peroxydes/composition chimique
20.
Chem Commun (Camb) ; 53(35): 4834-4837, 2017 Apr 27.
Article de Anglais | MEDLINE | ID: mdl-28447706

RÉSUMÉ

Ultra-dispersed nanodiamond and its derivatives (UNDDs), including bucky nanodiamond and onion-like carbon, offer superior catalytic behavior relative to other nanocarbons. However, a systematic study of their unique properties has been rarely achieved. Their surface chemistry and electronic properties are therefore studied to reveal the essential differences of UNDDs compared to other nanocarbons for catalysis.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE