Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Diabetes Metab Syndr Obes ; 16: 1577-1593, 2023.
Article de Anglais | MEDLINE | ID: mdl-37292142

RÉSUMÉ

Background: The primary pathophysiology of diabetic kidney disease (DKD) is tubulointerstitial fibrosis (TIF), and an essential contributing element is excessive extracellular matrix deposition. Irisin is a polypeptide formed by splitting fibronectin type III domain containing 5 (FNDC5), which participates in a number of physiological and pathological processes. Methods: The purpose of this article is to examine irisin's function in DKD and analyze both its in vitro and in vivo effects. The Gene Expression Omnibus (GEO) database was used to download GSE30122, GSE104954, and GSE99325. Analysis of renal tubule samples from nondiabetic and diabetic mice identified 94 differentially expressed genes (DEGs). The transforming growth factor beta receptor 2 (TGFBR2), irisin, and TGF-ß1 were utilized as DEGs to examine the impact of irisin on TIF in diabetic kidney tissue, according to the datasets retrieved from the GEO database and Nephroseq database. Additionally, the therapeutic impact of irisin was also examined using Western blot, RT-qPCR, immunofluorescence, immunohistochemistry, and kits for detecting mouse biochemical indices. Results: In vitro, the findings demonstrated that irisin not only down-regulated the expression of Smad4 and ß-catenin but also reduced the expression of proteins linked to fibrosis, the epithelial-mesenchymal transition (EMT), and mitochondrial dysfunction in HK-2 cells maintained in high glucose (HG) environment. In vivo, overexpressed FNDC5 plasmid was injected into diabetic mice to enhance its expression. Our studies found that overexpressed FNDC5 plasmid not only reversed the biochemical parameters and renal morphological characteristics of diabetic mice but also alleviated EMT and TIF by inhibiting Smad4/ß-catenin signaling pathway. Conclusion: The above experimental results revealed that irisin could reduce TIF in diabetic mice via regulating the Smad4/ß-catenin pathway.

2.
Dig Dis Sci ; 66(6): 1916-1927, 2021 06.
Article de Anglais | MEDLINE | ID: mdl-32671583

RÉSUMÉ

BACKGROUND: Exosomes are potential tools for disease control by regulating intercellular communication through carrying proteins and RNAs between cells or remote organs. Exosome activities have aroused wide concerns in cancer biology and malignancy control. AIMS: This study was performed to explore the roles of mesenchymal stem cell (MSC)-derived exosomes in colorectal cancer (CRC) progression. METHODS: MSC-exosomal microRNAs (miRNAs) in CRC tissues were analyzed, and aberrantly expressed miRNAs in CRC tissues were obtained from the data available on the GEO database. Altered expression of miR-3940-5p was introduced to identify its role in CRC invasion and metastasis in both cell and animal models. The binding relationship between miR-3940-5p and Integrin alpha6 (ITGA6) was predicted on TargetScan and validated through a luciferase assay. The effects of ITGA6 on CRC were figured out. RESULTS: MSC-derived exosomes carried miR-3940-5p into CRC cells. Up-regulation of miR-3940-5p inhibited epithelial-mesenchymal transition (EMT) and invasion of CRC cells, and suppressed the tumor metastasis and growth in vivo. miR-3940-5p was found to directly bind to ITGA6. Overexpression of ITGA6 promoted CRC cell invasion and EMT and tumor progression through upregulating the transforming growth factor-beta1 (TGF-ß1) signaling. A TGF-ß1-specific antagonist, Disitertide, blocked the functions of ITGA6 both in vivo and in vitro. CONCLUSION: MSC-exosomal miR-3940-5p inhibits invasion and EMT of CRC cells as well as growth and metastasis of tumors through targeting ITGA6 and the following TGF-ß1 inactivation. This study may provide novel insights into exosome-based treatment for CRC.


Sujet(s)
Tumeurs colorectales/métabolisme , Exosomes/métabolisme , Ciblage de gène/méthodes , Intégrine alpha6/métabolisme , Cellules souches mésenchymateuses/métabolisme , microARN/métabolisme , Animaux , Tumeurs colorectales/génétique , Tumeurs colorectales/anatomopathologie , Exosomes/génétique , Cellules HT29 , Humains , Intégrine alpha6/génétique , Souris , Souris de lignée BALB C , Souris nude , microARN/administration et posologie , microARN/génétique
3.
Cancer Manag Res ; 12: 6477-6491, 2020.
Article de Anglais | MEDLINE | ID: mdl-32801887

RÉSUMÉ

OBJECTIVE: Serum response factor (SRF), a sequence-specific transcription factor, is closely related to metastasis of gastric cancer, a digestive tract cancer. Herein, we probed the effect of SRF on metastasis and progression of colon cancer (CC), another digestive tract disorder, and the detailed mechanism. METHODS: Microarray analysis was conducted on tumor and adjacent tissues to filter differentially expressed miRNA, followed by RT-qPCR validation in CC cell lines. The transcription factor and the target gene of microRNA-214 (miR-214) were predicted, and their binding relationships were tested by luciferase reporter assays and ChIP assays. Subsequently, SRF and protein tyrosine kinase 6 (PTK6) expression in CC patients and cells was evaluated by RT-qPCR, while JAK2 and STAT3 expression in cells by Western blot analysis. To further explore functions of miR-214, PTK6 and SRF on CC, CC cells were delivered with si-PTK6, miR-214 mimic and/or SRF overexpression. RESULTS: miR-214 expressed poorly in CC tissues and cell lines, which related to advanced TNM staging and survival. miR-214 mimic inhibited proliferation, migration, invasion, xenograft tumor growth and metastasis of CC cells. SRF, overexpressed in CC samples and cells, suppressed the transcription of miR-214. Meanwhile, SRF upregulation counteracted the inhibitory role of miR-214 mimic in CC cell growth. miR-214 negatively regulated PTK6 expression to impair the JAK2/STAT3 pathway activation, thereby halting CC cell proliferation, migration, invasion, xenograft tumor growth and metastasis. CONCLUSION: Altogether, miR-214 may perform as a tumor suppressor in CC, and the SRF/miR-214/PTK6/JAK2/STAT3 axis could be applied as a biomarker and potential therapeutic target.

4.
Article de Anglais | MEDLINE | ID: mdl-28588641

RÉSUMÉ

BACKGROUND: We attempted to explore the molecular mechanism underlying PHY906 intervention of colon cancer. METHODS: The microarray data of tumors treated by PHY906 and PBS alone were downloaded from the public Gene Expression Omnibus database. The dataset was further analyzed for the differentially expressed genes (DEGs) and their related biological functions were analyzed, followed by function and pathways. Protein-protein interaction (PPI) network was constructed and the significant nodes were screened by network centralities and then the significant modules analysis. Besides, they were clustered and transcriptional factors (TFs) were predicted. RESULTS: The gene expression patterns changed induced by PHY906 treatment, including 414 upregulated and 337 downregulated DEGs. The biological process of response to steroid hormone stimulus and regulation of interferon-gamma production were significantly enriched by DEGs. Ezh2 (enhancer of zeste 2) was found to be the key node in PPI network. There are 12 significant TFs predicted for module 1 genes and 3 TFs for module 2 genes. CONCLUSIONS: PHY906 treatment may function in protecting the epithelial barrier against tumor cell invasion by modulating IFN-γ level and mediating cancer cell death by activating the response to steroid hormone stimulus and activating the response to steroid hormone stimulus. E2f1, Hsfy2, and Nfyb may be therapeutic targets for colon cancer. PHY906 showed treatment efficacy in modulating cell apoptosis by intervening interferon-gamma production and response to steroid hormone stimulus. Ezh2 and its TFs such as E2f1, Hsfy2, and Nfyb may be the potential therapeutic targets for anticancer agents development.

5.
Pathol Res Pract ; 211(5): 361-8, 2015 May.
Article de Anglais | MEDLINE | ID: mdl-25701361

RÉSUMÉ

Obesity is an increasing health problem associated with major adverse consequences for human health. MicroRNAs (miRNAs), small endogenous non-coding RNAs, regulate the expression of genes that play roles in human body via posttranscriptional inhibition. To identify the miRNAs and their target genes involved in obesity, we downloaded the miRNA and gene expression profiles from gene expression omnibus (GEO) database and analyzed the differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) in adipose tissues from obese subjects compared to those from non-obese subjects. Then, we constructed the miRNA-target interaction network and conducted functional enrichment analysis of DEGs, and the targets negatively correlated with DEMs. We identified a total of 16 miRNAs and 192 genes that showed a significantly different expression and 3002 miRNA-target interaction pairs, including 182 regulatory pairs in obesity. Target genes of DEMs were found mainly enriched in several functions, such as collagen fibril organization, extracellular matrix part, and extracellular matrix structural constituent. Moreover, hsa-miR-425 and hsa-miR-126 had a significant number of target genes and hsa-miR-16/COL12A1 and hsa-miR-634/SLC4A4 interaction pairs are significantly co-expressed, suggesting that they might play important roles in the pathogenesis of obesity. Our study provides a bioinformatic basis for further research of molecular mechanism in obesity.


Sujet(s)
Réseaux de régulation génique/génétique , microARN/génétique , Obésité/génétique , Transcriptome , Bases de données génétiques , Gene Ontology , Humains
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE