Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 27
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Thromb Haemost ; 22(1): 225-237, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37813198

RÉSUMÉ

BACKGROUND: In plasma, high molecular weight kininogen (HK) is either free or bound to prekallikrein (PK) or factor (F) XI (FXI). During contact activation, HK is thought to anchor PK and FXI to surfaces, facilitating their conversion to the proteases plasma kallikrein and FXIa. Mice lacking HK have normal hemostasis but are resistant to injury-induced arterial thrombosis. OBJECTIVES: To identify amino acids on the HK-D6 domain involved in PK and FXI binding and study the importance of the HK-PK and HK-FXI interactions to coagulation. METHODS: Twenty-four HK variants with alanine replacements spanning residues 542-613 were tested in PK/FXI binding and activated partial thromboplastin time clotting assays. Surface-induced FXI and PK activation in plasma were studied in the presence or absence of HK. Kng1-/- mice lacking HK were supplemented with human or murine HK and tested in an arterial thrombosis model. RESULTS: Overlapping binding sites for PK and FXI were identified in the HK-D6 domain. HK variants with defects only in FXI binding corrected the activated partial thromboplastin time of HK-deficient plasma poorly compared to a variant defective only in PK-binding. In plasma, HK deficiency appeared to have a greater deleterious effect on FXI activation than PK activation. Human HK corrected the defect in arterial thrombus formation in HK-deficient mice poorly due to a specific defect in binding to mouse FXI. CONCLUSION: Clinical observations indicate FXI is required for hemostasis, while HK is not. Yet, the HK-FXI interaction is required for contact activation-induced clotting in vitro and in vivo suggesting an important role in thrombosis and perhaps other FXI-related activities.


Sujet(s)
Kininogène de haut poids moléculaire , Thrombose , Animaux , Humains , Souris , Kininogène de haut poids moléculaire/métabolisme , Facteur XI/métabolisme , Prékallicréine/métabolisme , Coagulation sanguine
2.
Blood ; 143(7): 641-650, 2024 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-37992228

RÉSUMÉ

ABSTRACT: Hereditary angioedema (HAE) is associated with episodic kinin-induced swelling of the skin and mucosal membranes. Most patients with HAE have low plasma C1-inhibitor activity, leading to increased generation of the protease plasma kallikrein (PKa) and excessive release of the nanopeptide bradykinin from high-molecular-weight kininogen (HK). However, disease-causing mutations in at least 10% of patients with HAE appear to involve genes for proteins other than C1-inhibitor. A point mutation in the Kng1 gene encoding HK and low-molecular weight kininogen (LK) was identified recently in a family with HAE. The mutation changes a methionine (Met379) to lysine (Lys379) in both proteins. Met379 is adjacent to the Lys380-Arg381 cleavage site at the N-terminus of the bradykinin peptide. Recombinant wild-type (Met379) and variant (Lys379) versions of HK and LK were expressed in HEK293 cells. PKa-catalyzed kinin release from HK and LK was not affected by the Lys379 substitutions. However, kinin release from HK-Lys379 and LK-Lys379 catalyzed by the fibrinolytic protease plasmin was substantially greater than from wild-type HK-Met379 and LK-Met379. Increased kinin release was evident when fibrinolysis was induced in plasma containing HK-Lys379 or LK-Lys379 compared with plasma containing wild-type HK or LK. Mass spectrometry revealed that the kinin released from wild-type and variant kininogens by PKa is bradykinin. Plasmin also released bradykinin from wild-type kininogens but cleaved HK-Lys379 and LK-Lys379 after Lys379 rather than Lys380, releasing the decapeptide Lys-bradykinin (kallidin). The Met379Lys substitutions make HK and LK better plasmin substrates, reinforcing the relationship between fibrinolysis and kinin generation.


Sujet(s)
Angio-oedèmes héréditaires , Bradykinine , Humains , Lysine , Angio-oedèmes héréditaires/génétique , Fibrinolysine , Méthionine , Cellules HEK293 , Kininogènes , Kallicréines/génétique , Racéméthionine
3.
Front Physiol ; 14: 1146834, 2023.
Article de Anglais | MEDLINE | ID: mdl-37288434

RÉSUMÉ

Patients with the inherited disorder hereditary angioedema (HAE) suffer from episodes of soft tissue swelling due to excessive bradykinin production. In most cases, dysregulation of the plasma kallikrein-kinin system due to deficiency of plasma C1 inhibitor is the underlying cause. However, at least 10% of HAE patients have normal plasma C1 inhibitor activity levels, indicating their syndrome is the result of other causes. Two mutations in plasma protease zymogens that appear causative for HAE with normal C1 inhibitor activity have been identified in multiple families. Both appear to alter protease activity in a gain-of-function manner. Lysine or arginine substitutions for threonine 309 in factor XII introduces a new protease cleavage site that results in formation of a truncated factor XII protein (Δ-factor XII) that accelerates kallikrein-kinin system activity. A glutamic acid substitution for lysine 311 in the fibrinolytic protein plasminogen creates a consensus binding site for lysine/arginine side chains. The plasmin form of the variant plasminogen cleaves plasma kininogens to release bradykinin directly, bypassing the kallikrein-kinin system. Here we review work on the mechanisms of action of the FXII-Lys/Arg309 and Plasminogen-Glu311 variants, and discuss the clinical implications of these mechanisms.

4.
Semin Thromb Hemost ; 2023 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-37276883

RÉSUMÉ

Factor XII (FXII), the zymogen of the protease FXIIa, contributes to pathologic processes such as bradykinin-dependent angioedema and thrombosis through its capacity to convert the homologs prekallikrein and factor XI to the proteases plasma kallikrein and factor XIa. FXII activation and FXIIa activity are enhanced when the protein binds to a surface. Here, we review recent work on the structure and enzymology of FXII with an emphasis on how they relate to pathology. FXII is a homolog of pro-hepatocyte growth factor activator (pro-HGFA). We prepared a panel of FXII molecules in which individual domains were replaced with corresponding pro-HGFA domains and tested them in FXII activation and activity assays. When in fluid phase (not surface bound), FXII and prekallikrein undergo reciprocal activation. The FXII heavy chain restricts reciprocal activation, setting limits on the rate of this process. Pro-HGFA replacements for the FXII fibronectin type 2 or kringle domains markedly accelerate reciprocal activation, indicating disruption of the normal regulatory function of the heavy chain. Surface binding also enhances FXII activation and activity. This effect is lost if the FXII first epidermal growth factor (EGF1) domain is replaced with pro-HGFA EGF1. These results suggest that FXII circulates in blood in a "closed" form that is resistant to activation. Intramolecular interactions involving the fibronectin type 2 and kringle domains maintain the closed form. FXII binding to a surface through the EGF1 domain disrupts these interactions, resulting in an open conformation that facilitates FXII activation. These observations have implications for understanding FXII contributions to diseases such as hereditary angioedema and surface-triggered thrombosis, and for developing treatments for thrombo-inflammatory disorders.

5.
Blood Adv ; 6(10): 3142-3154, 2022 05 24.
Article de Anglais | MEDLINE | ID: mdl-35086137

RÉSUMÉ

Factor XII (FXII) is the zymogen of a plasma protease (FXIIa) that contributes to bradykinin generation by converting prekallikrein to the protease plasma kallikrein (PKa). FXII conversion to FXIIa by autocatalysis or PKa-mediated cleavage is enhanced when the protein binds to negatively charged surfaces such as polymeric orthophosphate. FXII is composed of noncatalytic (heavy chain) and catalytic (light chain) regions. The heavy chain promotes FXII surface-binding and surface-dependent activation but restricts activation when FXII is not surface bound. From the N terminus, the heavy chain contains fibronectin type 2 (FN2), epidermal growth factor-1 (EGF1), fibronectin type 1 (FN1), EGF2, and kringle (KNG) domains and a proline-rich region. It shares this organization with its homolog, pro-hepatocyte growth factor activator (Pro-HGFA). To study the importance of heavy chain domains in FXII function, we prepared FXII with replacements of each domain with corresponding Pro-HGFA domains and tested them in activation and activity assays. EGF1 is required for surface-dependent FXII autoactivation and surface-dependent prekallikrein activation by FXIIa. KNG and FN2 are important for limiting FXII activation in the absence of a surface by a process that may require interactions between a lysine/arginine binding site on KNG and basic residues elsewhere on FXII. This interaction is disrupted by the lysine analog ε-aminocaproic acid. A model is proposed in which an ε-aminocaproic acid-sensitive interaction between the KNG and FN2 domains maintains FXII in a conformation that restricts activation. Upon binding to a surface through EGF1, the KNG/FN2-dependent mechanism is inactivated, exposing the FXII activation cleavage site.


Sujet(s)
Facteur XII , Prékallicréine , Acide 6-amino-caproïque , Coagulation sanguine , Facteur XII/composition chimique , Fibronectines/composition chimique , Lysine , Prékallicréine/composition chimique , Prékallicréine/métabolisme
6.
Blood ; 139(18): 2816-2829, 2022 05 05.
Article de Anglais | MEDLINE | ID: mdl-35100351

RÉSUMÉ

Patients with hereditary angioedema (HAE) experience episodes of bradykinin (BK)-induced swelling of skin and mucosal membranes. The most common cause is reduced plasma activity of C1 inhibitor, the main regulator of the proteases plasma kallikrein (PKa) and factor XIIa (FXIIa). Recently, patients with HAE were described with a Lys311 to glutamic acid substitution in plasminogen (Plg), the zymogen of the protease plasmin (Plm). Adding tissue plasminogen activator to plasma containing Plg-Glu311 vs plasma containing wild-type Plg (Plg-Lys311) results in greater BK generation. Similar results were obtained in plasma lacking prekallikrein or FXII (the zymogens of PKa and FXIIa) and in normal plasma treated with a PKa inhibitor, indicating Plg-Glu311 induces BK generation independently of PKa and FXIIa. Plm-Glu311 cleaves high and low molecular weight kininogens (HK and LK, respectively), releasing BK more efficiently than Plm-Lys311. Based on the plasma concentrations of HK and LK, the latter may be the source of most of the BK generated by Plm-Glu311. The lysine analog ε-aminocaproic acid blocks Plm-catalyzed BK generation. The Glu311 substitution introduces a lysine-binding site into the Plg kringle 3 domain, perhaps altering binding to kininogens. Plg residue 311 is glutamic acid in most mammals. Glu311 in patients with HAE, therefore, represents reversion to the ancestral condition. Substantial BK generation occurs during Plm-Glu311 cleavage of human HK, but not mouse HK. Furthermore, mouse Plm, which has Glu311, did not liberate BK from human kininogens more rapidly than human Plg-Lys311. This indicates Glu311 is pathogenic in the context of human Plm when human kininogens are the substrates.


Sujet(s)
Angio-oedèmes héréditaires , Angio-oedèmes héréditaires/génétique , Angio-oedèmes héréditaires/anatomopathologie , Animaux , Bradykinine/métabolisme , Facteur XIIa/métabolisme , Fibrinolysine , Acide glutamique , Humains , Kininogènes/métabolisme , Lysine , Mammifères/métabolisme , Souris , Kallicréine plasmatique , Plasminogène/génétique , Plasminogène/métabolisme , Activateur tissulaire du plasminogène
7.
Blood Adv ; 4(24): 6135-6147, 2020 12 22.
Article de Anglais | MEDLINE | ID: mdl-33351111

RÉSUMÉ

Factor XI (FXI) is the zymogen of a plasma protease (FXIa) that contributes to hemostasis by activating factor IX (FIX). In the original cascade model of coagulation, FXI is converted to FXIa by factor XIIa (FXIIa), a component, along with prekallikrein and high-molecular-weight kininogen (HK), of the plasma kallikrein-kinin system (KKS). More recent coagulation models emphasize thrombin as a FXI activator, bypassing the need for FXIIa and the KKS. We took an evolutionary approach to better understand the relationship of FXI to the KKS and thrombin generation. BLAST searches were conducted for FXI, FXII, prekallikrein, and HK using genomes for multiple vertebrate species. The analysis shows the KKS appeared in lobe-finned fish, the ancestors of all land vertebrates. FXI arose later from a duplication of the prekallikrein gene early in mammalian evolution. Features of FXI that facilitate efficient FIX activation are present in all living mammals, including primitive egg-laying monotremes, and may represent enhancement of FIX-activating activity inherent in prekallikrein. FXI activation by thrombin is a more recent acquisition, appearing in placental mammals. These findings suggest FXI activation by FXIIa may be more important to hemostasis in primitive mammals than in placental mammals. FXI activation by thrombin places FXI partially under control of the vitamin K-dependent coagulation mechanism, reducing the importance of the KKS in blood coagulation. This would explain why humans with FXI deficiency have a bleeding abnormality, whereas those lacking components of the KKS do not.


Sujet(s)
Déficit en facteur XI , Facteur XI , Animaux , Facteur XI/génétique , Facteur XI/métabolisme , Déficit en facteur XI/génétique , Facteur XIIa/métabolisme , Femelle , Humains , Système kallicréine-kinine , Grossesse , Prékallicréine/génétique , Prékallicréine/métabolisme
8.
Blood ; 135(8): 558-567, 2020 02 20.
Article de Anglais | MEDLINE | ID: mdl-31800958

RÉSUMÉ

Prekallikrein (PK) is the precursor of the trypsin-like plasma protease kallikrein (PKa), which cleaves kininogens to release bradykinin and converts the protease precursor factor XII (FXII) to the enzyme FXIIa. PK and FXII undergo reciprocal conversion to their active forms (PKa and FXIIa) by a process that is accelerated by a variety of biological and artificial surfaces. The surface-mediated process is referred to as contact activation. Previously, we showed that FXII expresses a low level of proteolytic activity (independently of FXIIa) that may initiate reciprocal activation with PK. The current study was undertaken to determine whether PK expresses similar activity. Recombinant PK that cannot be converted to PKa was prepared by replacing Arg371 with alanine at the activation cleavage site (PK-R371A, or single-chain PK). Despite being constrained to the single-chain precursor form, PK-R371A cleaves high-molecular-weight kininogen (HK) to release bradykinin with a catalytic efficiency ∼1500-fold lower than that of kallikrein cleavage of HK. In the presence of a surface, PK-R371A converts FXII to FXIIa with a specific activity ∼4 orders of magnitude lower than for PKa cleavage of FXII. These results support the notion that activity intrinsic to PK and FXII can initiate reciprocal activation of FXII and PK in solution or on a surface. The findings are consistent with the hypothesis that the putative zymogens of many trypsin-like proteases are actually active proteases, explaining their capacity to undergo processes such as autoactivation and to initiate enzyme cascades.


Sujet(s)
Coagulation sanguine , Bradykinine/métabolisme , Prékallicréine/métabolisme , Substitution d'acide aminé , Animaux , Facteur XII/métabolisme , Cellules HEK293 , Humains , Kininogène de haut poids moléculaire/métabolisme , Souris de lignée C57BL , Prékallicréine/composition chimique , Prékallicréine/génétique , Protéolyse , Protéines recombinantes/composition chimique , Protéines recombinantes/génétique , Protéines recombinantes/métabolisme
9.
Blood ; 133(10): 1152-1163, 2019 03 07.
Article de Anglais | MEDLINE | ID: mdl-30591525

RÉSUMÉ

The plasma proteins factor XII (FXII) and prekallikrein (PK) undergo reciprocal activation to the proteases FXIIa and kallikrein by a process that is enhanced by surfaces (contact activation) and regulated by the serpin C1 inhibitor. Kallikrein cleaves high-molecular-weight kininogen (HK), releasing the vasoactive peptide bradykinin. Patients with hereditary angioedema (HAE) experience episodes of soft tissue swelling as a consequence of unregulated kallikrein activity or increased prekallikrein activation. Although most HAE cases are caused by reduced plasma C1-inhibitor activity, HAE has been linked to lysine/arginine substitutions for Thr309 in FXII (FXII-Lys/Arg309). Here, we show that FXII-Lys/Arg309 is susceptible to cleavage after residue 309 by coagulation proteases (thrombin and FXIa), resulting in generation of a truncated form of FXII (δFXII). The catalytic efficiency of δFXII activation by kallikrein is 15-fold greater than for full-length FXII. The enhanced rate of reciprocal activation of PK and δFXII in human plasma and in mice appears to overwhelm the normal inhibitory function of C1 inhibitor, leading to increased HK cleavage. In mice given human FXII-Lys/Arg309, induction of thrombin generation by infusion of tissue factor results in enhanced HK cleavage as a consequence of δFXII formation. The effects of δFXII in vitro and in vivo are reproduced when wild-type FXII is bound by an antibody to the FXII heavy chain (HC; 15H8). The results contribute to our understanding of the predisposition of patients carrying FXII-Lys/Arg309 to angioedema after trauma, and reveal a regulatory function for the FXII HC that normally limits PK activation in plasma.


Sujet(s)
Facteur XII/composition chimique , Facteur XIa/composition chimique , Angioedème héréditaire de type III/sang , Angioedème héréditaire de type III/génétique , Angio-oedèmes héréditaires , Animaux , Arginine/composition chimique , Coagulation sanguine , Bradykinine/sang , Catalyse , C1 Inhibiteur/composition chimique , Facteur XIIa/composition chimique , Cellules HEK293 , Humains , Kininogènes/sang , Lysine/composition chimique , Souris , Souris de lignée C57BL , Kallicréine plasmatique/composition chimique , Prékallicréine/composition chimique , Liaison aux protéines , Protéines recombinantes/composition chimique , Propriétés de surface , Thrombine/génétique
10.
Thromb Res ; 161: 94-105, 2018 01.
Article de Anglais | MEDLINE | ID: mdl-29223926

RÉSUMÉ

Factor XI (FXI) is the zymogen of a plasma protease, factor XIa (FXIa), that contributes to thrombin generation during blood coagulation by proteolytic activation of several coagulation factors, most notably factor IX (FIX). FXI is a homolog of prekallikrein (PK), a component of the plasma kallikrein-kinin system. While sharing structural and functional features with PK, FXI has undergone adaptive changes that allow it to contribute to blood coagulation. Here we review current understanding of the biology and enzymology of FXI, with an emphasis on structural features of the protein as they relate to protease function.


Sujet(s)
Facteur XI/génétique , Facteur XI/métabolisme , Humains , Maturation post-traductionnelle des protéines
11.
Thromb Haemost ; 117(4): 671-681, 2017 04 03.
Article de Anglais | MEDLINE | ID: mdl-28124063

RÉSUMÉ

The plasma zymogens factor XI (fXI) and prekallikrein (PK) are activated by factor XIIa (fXIIa) during contact activation. Polyanions such as DNA and RNA may contribute to thrombosis and inflammation partly by enhancing PK and fXI activation. We examined PK and fXI activation in the presence of nucleic acids, and determine the effects of the cofactor high molecular weight kininogen (HK) on the reactions. In the absence of HK, DNA and RNA induced fXI autoactivation. Proteases known to activate fXI (fXIIa and thrombin) did not enhance this process appreciably. Nucleic acids had little effect on PK activation by fXIIa in the absence of HK. HK had significant but opposite effects on PK and fXI activation. HK enhanced fXIIa activation of PK in the presence of nucleic acids, but blocked fXI autoactivation. Thrombin and fXIIa could overcome the HK inhibitory effect on autoactivation, indicating these proteases are necessary for nucleic acid-induced fXI activation in an HK-rich environment such as plasma. In contrast to PK, which requires HK for optimal activation, fXI activation in the presence of nucleic acids depends on anion binding sites on the fXI molecule. The corresponding sites on PK are not necessary for PK activation. Our results indicate that HK functions as a cofactor for PK activation in the presence of nucleic acids in a manner consistent with classic models of contact activation. However, HK has, on balance, an inhibitory effect on nucleic acid-supported fXI activation and may function as a negative regulator of fXI activation.


Sujet(s)
Coagulation sanguine , ADN/métabolisme , Facteur XIa/métabolisme , Kininogène de haut poids moléculaire/métabolisme , Prékallicréine/métabolisme , ARN/métabolisme , Activation enzymatique , Facteur XIIa/métabolisme , Humains , Thrombine/métabolisme , Facteurs temps
12.
Blood ; 129(11): 1527-1537, 2017 03 16.
Article de Anglais | MEDLINE | ID: mdl-28069606

RÉSUMÉ

When blood is exposed to variety of artificial surfaces and biologic substances, the plasma proteins factor XII (FXII) and prekallikrein undergo reciprocal proteolytic conversion to the proteases αFXIIa and α-kallikrein by a process called contact activation. These enzymes contribute to host-defense responses including coagulation, inflammation, and fibrinolysis. The initiating event in contact activation is debated. To test the hypothesis that single-chain FXII expresses activity that could initiate contact activation, we prepared human FXII variants lacking the Arg353 cleavage site required for conversion to αFXIIa (FXII-R353A), or lacking the 3 known cleavage sites at Arg334, Arg343, and Arg353 (FXII-T, for "triple" mutant), and compared their properties to wild-type αFXIIa. In the absence of a surface, FXII-R353A and FXII-T activate prekallikrein and cleave the tripeptide S-2302, demonstrating proteolytic activity. The activity is several orders of magnitude weaker than that of αFXIIa. Polyphosphate, an inducer of contact activation, enhances PK activation by FXII-T, and facilitates FXII-T activation of FXII and FXI. In plasma, FXII-T and FXII-R353A, but not FXII lacking the active site serine residue (FXII-S544A), shortened the clotting time of FXII-deficient plasma and enhanced thrombin generation in a surface-dependent manner. The effect was not as strong as for wild-type FXII. Our results support a model for induction of contact activation in which activity intrinsic to single-chain FXII initiates αFXIIa and α-kallikrein formation on a surface. αFXIIa, with support from α-kallikrein, subsequently accelerates contact activation and is responsible for the full procoagulant activity of FXII.


Sujet(s)
Coagulation sanguine , Facteur XII/métabolisme , Protéolyse , Domaine catalytique/génétique , Facteur XIIa/métabolisme , Humains , Kallicréines/métabolisme , Propriétés de surface
13.
Thromb Res ; 133 Suppl 1: S48-51, 2014 May.
Article de Anglais | MEDLINE | ID: mdl-24759143

RÉSUMÉ

Factor XI (fXI) is the zymogen of a plasma protease, factor XIa (fXIa), that contributes to thrombin generation during blood coagulation by proteolytic conversion of factor IX (fIX) to factor IXaß (fIXaß). There is considerable interest in fXIa as a therapeutic target because it contributes to thrombosis, while serving a relatively minor role in hemostasis. FXI/XIa has a distinctly different structure than other plasma coagulation proteases. Specifically, the protein lacks a phospholipid-binding Gla-domain, and is a homodimer. Each subunit of a fXIa dimer contains four apple domains (A1 to A4) and one trypsin-like catalytic domain. The A3 domain contains a binding site (exosite) that largely determines affinity and specificity for the substrate fIX. After binding to fXIa, fIX undergoes a single cleavage to form the intermediate fIXα. FIXα then rebinds to the A3 domain to undergo a second cleavage, generating fIXaß. The catalytic efficiency for the second cleavage is ~7-fold greater than that of the first cleavage, limiting fIXα accumulation. Residues at the N-terminus and C-terminus of the fXIa A3 domain likely form the fIX binding site. The dimeric conformation of fXIa is not required for normal fIX activation in solution. However, monomeric forms of fXI do not reconstitute fXI-deficient mice in arterial thrombosis models, indicating the dimer is required for normal function in vivo. FXI must be a dimer to be activated normal by the protease fXIIa. It is also possible that the dimeric structure is an adaptation that allows fXI/XIa to bind to a surface through one subunit, while binding to its substrate fIX through the other.


Sujet(s)
Facteur IX/métabolisme , Facteur XIa/métabolisme , Séquence d'acides aminés , Animaux , Facteur IX/composition chimique , Facteur XIa/composition chimique , Humains , Modèles moléculaires , Données de séquences moléculaires , Conformation des protéines , Multimérisation de protéines
14.
Blood ; 123(11): 1739-46, 2014 Mar 13.
Article de Anglais | MEDLINE | ID: mdl-24408325

RÉSUMÉ

The plasma zymogens factor XII (fXII) and factor XI (fXI) contribute to thrombosis in a variety of mouse models. These proteins serve a limited role in hemostasis, suggesting that antithrombotic therapies targeting them may be associated with low bleeding risks. Although there is substantial epidemiologic evidence supporting a role for fXI in human thrombosis, the situation is not as clear for fXII. We generated monoclonal antibodies (9A2 and 15H8) against the human fXII heavy chain that interfere with fXII conversion to the protease factor XIIa (fXIIa). The anti-fXII antibodies were tested in models in which anti-fXI antibodies are known to have antithrombotic effects. Both anti-fXII antibodies reduced fibrin formation in human blood perfused through collagen-coated tubes. fXII-deficient mice are resistant to ferric chloride-induced arterial thrombosis, and this resistance can be reversed by infusion of human fXII. 9A2 partially blocks, and 15H8 completely blocks, the prothrombotic effect of fXII in this model. 15H8 prolonged the activated partial thromboplastin time of baboon and human plasmas. 15H8 reduced fibrin formation in collagen-coated vascular grafts inserted into arteriovenous shunts in baboons, and reduced fibrin and platelet accumulation downstream of the graft. These findings support a role for fXII in thrombus formation in primates.


Sujet(s)
Modèles animaux de maladie humaine , Déficit en facteur XII/complications , Facteur XII/antagonistes et inhibiteurs , Facteur XII/physiologie , Thrombine/métabolisme , Thrombose/prévention et contrôle , Animaux , Anticorps monoclonaux/immunologie , Anticorps monoclonaux/métabolisme , Coagulation sanguine , Facteur XI/métabolisme , Facteur XIIa/métabolisme , Fibrine/métabolisme , Humains , Mâle , Souris , Souris de lignée BALB C , Souris de lignée C57BL , Souris knockout , Papio , Protéines recombinantes/génétique , Protéines recombinantes/immunologie , Protéines recombinantes/métabolisme , Thromboplastine/métabolisme , Thrombose/étiologie , Thrombose/métabolisme
15.
Blood ; 121(19): 3962-9, 2013 May 09.
Article de Anglais | MEDLINE | ID: mdl-23515926

RÉSUMÉ

Factor XI (fXI) is a homodimeric zymogen that is converted to a protease with 1 (1/2-fXIa) or 2 (fXIa) active subunits by factor XIIa (fXIIa) or thrombin. It has been proposed that the dimeric structure is required for normal fXI activation. Consistent with this premise, fXI monomers do not reconstitute fXI-deficient mice in a fXIIa-dependent thrombosis model. FXI activation by fXIIa or thrombin is a slow reaction that can be accelerated by polyanions. Phosphate polymers released from platelets (poly-P) can enhance fXI activation by thrombin and promote fXI autoactivation. Poly-P increased initial rates of fXI activation 30- and 3000-fold for fXIIa and thrombin, respectively. FXI monomers were activated more slowly than dimers by fXIIa in the presence of poly-P. However, this defect was not observed when thrombin was the activating protease, nor during fXI autoactivation. The data suggest that fXIIa and thrombin activate fXI by different mechanisms. FXIIa may activate fXI through a trans-activation mechanism in which the protease binds to 1 subunit of the dimer, while activating the other subunit. For activation by thrombin, or during autoactivation, the data support a cis-activation mechanism in which the activating protease binds to and activates the same fXI subunit.


Sujet(s)
Facteur XI/composition chimique , Facteur XI/métabolisme , Facteur XIa/métabolisme , Animaux , Thrombose carotidienne/génétique , Thrombose carotidienne/métabolisme , Facteur XI/génétique , Déficit en facteur XI/génétique , Déficit en facteur XI/métabolisme , Facteur XIIa/composition chimique , Facteur XIIa/métabolisme , Facteur XIa/composition chimique , Cellules HEK293 , Humains , Souris , Souris de lignée C57BL , Souris knockout , Modèles biologiques , Liaison aux protéines , Multimérisation de protéines , Structure quaternaire des protéines
16.
J Biol Chem ; 287(45): 38200-9, 2012 Nov 02.
Article de Anglais | MEDLINE | ID: mdl-22961984

RÉSUMÉ

During blood coagulation, the protease factor XIa (fXIa) activates factor IX (fIX). We describe a new mechanism for this process. FIX is cleaved initially after Arg(145) to form fIXα, and then after Arg(180) to form the protease fIXaß. FIXα is released from fXIa, and must rebind for cleavage after Arg(180) to occur. Catalytic efficiency of cleavage after Arg(180) is 7-fold greater than for cleavage after Arg(145), limiting fIXα accumulation. FXIa contains four apple domains (A1-A4) and a catalytic domain. Exosite(s) on fXIa are required for fIX binding, however, there is lack of consensus on their location(s), with sites on the A2, A3, and catalytic domains described. Replacing the A3 domain with the prekallikrein A3 domain increases K(m) for fIX cleavage after Arg(145) and Arg(180) 25- and ≥ 90-fold, respectively, and markedly decreases k(cat) for cleavage after Arg(180). Similar results were obtained with the isolated fXIa catalytic domain, or fXIa in the absence of Ca(2+). Forms of fXIa lacking the A3 domain exhibit 15-fold lower catalytic efficiency for cleavage after Arg(180) than for cleavage after Arg(145), resulting in fIXα accumulation. Replacing the A2 domain does not affect fIX activation. The results demonstrate that fXIa activates fIX by an exosite- and Ca(2+)-mediated release-rebind mechanism in which efficiency of the second cleavage is enhanced by conformational changes resulting from the first cleavage. Initial binding of fIX and fIXα requires an exosite on the fXIa A3 domain, but not the A2 or catalytic domain.


Sujet(s)
Facteur IX/métabolisme , Facteur IXa/métabolisme , Facteur XIa/métabolisme , Arginine/métabolisme , Sites de fixation/génétique , Fixation compétitive , Biocatalyse/effets des médicaments et des substances chimiques , Calcium/métabolisme , Calcium/pharmacologie , Domaine catalytique , Électrophorèse sur gel de polyacrylamide , Facteur XIa/composition chimique , Facteur XIa/génétique , Cellules HEK293 , Humains , Cinétique , Mutation , Oligopeptides/métabolisme , Multimérisation de protéines , Protéolyse , Acide pidolique/analogues et dérivés , Acide pidolique/métabolisme , Protéines recombinantes/composition chimique , Protéines recombinantes/métabolisme , Spécificité du substrat
17.
Blood ; 118(2): 437-45, 2011 Jul 14.
Article de Anglais | MEDLINE | ID: mdl-21527525

RÉSUMÉ

The prothrombinase complex converts prothrombin to α-thrombin through the intermediate meizothrombin (Mz-IIa). Both α-thrombin and Mz-IIa catalyze factor (F) XI activation to FXIa, which sustains α-thrombin production through activation of FIX. The interaction with FXI is thought to involve thrombin anion binding exosite (ABE) I. α-Thrombin can undergo additional proteolysis to ß-thrombin and γ-thrombin, neither of which have an intact ABE I. In a purified protein system, FXI is activated by ß-thrombin or γ-thrombin, and by α-thrombin in the presence of the ABE I-blocking peptide hirugen, indicating that a fully formed ABE I is not absolutely required for FXI activation. In a FXI-dependent plasma thrombin generation assay, ß-thrombin, γ-thrombin, and α-thrombins with mutations in ABE I are approximately 2-fold more potent initiators of thrombin generation than α-thrombin or Mz-IIa, possibly because fibrinogen, which binds to ABE I, competes poorly with FXI for forms of thrombin lacking ABE I. In addition, FXIa can activate factor FXII, which could contribute to thrombin generation through FXIIa-mediated FXI activation. The data indicate that forms of thrombin other than α-thrombin contribute directly to feedback activation of FXI in plasma and suggest that FXIa may provide a link between tissue factor-initiated coagulation and the proteases of the contact system.


Sujet(s)
Facteur XI/métabolisme , Prothrombine/métabolisme , Prothrombine/physiologie , Séquence d'acides aminés , Coagulation sanguine/physiologie , Tests de coagulation sanguine , Domaine catalytique , Cellules cultivées , Facteur XI/composition chimique , Humains , Modèles biologiques , Données de séquences moléculaires , Peptide hydrolases/métabolisme , Prothrombine/composition chimique , Protéines recombinantes/composition chimique , Protéines recombinantes/métabolisme , Similitude de séquences d'acides aminés
19.
Blood ; 116(19): 3981-9, 2010 Nov 11.
Article de Anglais | MEDLINE | ID: mdl-20634381

RÉSUMÉ

Mice lacking factor XII (fXII) or factor XI (fXI) are resistant to experimentally-induced thrombosis, suggesting fXIIa activation of fXI contributes to thrombus formation in vivo. It is not clear whether this reaction has relevance for thrombosis in pri mates. In 2 carotid artery injury models (FeCl(3) and Rose Bengal/laser), fXII-deficient mice are more resistant to thrombosis than fXI- or factor IX (fIX)-deficient mice, raising the possibility that fXII and fXI function in distinct pathways. Antibody 14E11 binds fXI from a variety of mammals and interferes with fXI activation by fXIIa in vitro. In mice, 14E11 prevented arterial occlusion induced by FeCl(3) to a similar degree to total fXI deficiency. 14E11 also had a modest beneficial effect in a tissue factor-induced pulmonary embolism model, indicating fXI and fXII contribute to thrombus formation even when factor VIIa/tissue factor initiates thrombosis. In baboons, 14E11 reduced platelet-rich thrombus growth in collagen-coated grafts inserted into an arteriovenous shunt. These data support the hypothesis that fXIIa-mediated fXI activation contributes to thrombus formation in rodents and primates. Since fXII deficiency does not impair hemostasis, targeted inhibition of fXI activation by fXIIa may be a useful antithrombotic strategy associated with a low risk of bleeding complications.


Sujet(s)
Facteur XIIa/physiologie , Facteur XI/physiologie , Thrombose/sang , Thrombose/étiologie , Animaux , Anticorps monoclonaux/pharmacologie , Anticoagulants/pharmacologie , Thrombose carotidienne/sang , Thrombose carotidienne/étiologie , Chats , Modèles animaux de maladie humaine , Chiens , Facteur XI/antagonistes et inhibiteurs , Déficit en facteur XI/sang , Déficit en facteur XI/génétique , Déficit en facteur XI/physiopathologie , Déficit en facteur XII/sang , Déficit en facteur XII/génétique , Déficit en facteur XII/physiopathologie , Humains , Techniques in vitro , Mâle , Souris , Souris de lignée BALB C , Souris knockout , Papio anubis , Temps partiel de thromboplastine , Embolie pulmonaire/sang , Embolie pulmonaire/étiologie , Lapins , Spécificité d'espèce
20.
Blood ; 114(2): 452-8, 2009 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-19351955

RÉSUMÉ

During surface-initiated blood coagulation in vitro, activated factor XII (fXIIa) converts factor XI (fXI) to fXIa. Whereas fXI deficiency is associated with a hemorrhagic disorder, factor XII deficiency is not, suggesting that fXI can be activated by other mechanisms in vivo. Thrombin activates fXI, and several studies suggest that fXI promotes coagulation independent of fXII. However, a recent study failed to find evidence for fXII-independent activation of fXI in plasma. Using plasma in which fXII is either inhibited or absent, we show that fXI contributes to plasma thrombin generation when coagulation is initiated with low concentrations of tissue factor, factor Xa, or alpha-thrombin. The results could not be accounted for by fXIa contamination of the plasma systems. Replacing fXI with recombinant fXI that activates factor IX poorly, or fXI that is activated poorly by thrombin, reduced thrombin generation. An antibody that blocks fXIa activation of factor IX reduced thrombin generation; however, an antibody that specifically interferes with fXI activation by fXIIa did not. The results support a model in which fXI is activated by thrombin or another protease generated early in coagulation, with the resulting fXIa contributing to sustained thrombin generation through activation of factor IX.


Sujet(s)
Facteur XI/métabolisme , Thrombine/métabolisme , Lignée cellulaire , Facteur XI/génétique , Facteur XII/métabolisme , Humains , Spécificité du substrat , Thromboplastine/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE