Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 23
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Plant Physiol ; 195(2): 1681-1693, 2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38478507

RÉSUMÉ

Fusarium head blight (FHB), caused by Fusarium graminearum, causes huge annual economic losses in cereal production. To successfully colonize host plants, pathogens secrete hundreds of effectors that interfere with plant immunity and facilitate infection. However, the roles of most secreted effectors of F. graminearum in pathogenesis remain unclear. We analyzed the secreted proteins of F. graminearum and identified 255 candidate effector proteins by liquid chromatography-mass spectrometry (LC-MS). Five subtilisin-like family proteases (FgSLPs) were identified that can induce cell death in Nicotiana benthamiana leaves. Further experiments showed that these FgSLPs induced cell death in cotton (Gossypium barbadense) and Arabidopsis (Arabidopsis thaliana). A signal peptide and light were not essential for the cell death-inducing activity of FgSLPs. The I9 inhibitor domain and the entire C-terminus of FgSLPs were indispensable for their self-processing and cell death-inducing activity. FgSLP-induced cell death occurred independent of the plant signal transduction components BRI-ASSOCIATED KINASE 1 (BAK1), SUPPRESSOR OF BIR1 1 (SOBIR1), ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), and PHYTOALEXIN DEFICIENT 4 (PAD4). Reduced virulence was observed when FgSLP1 and FgSLP2 were simultaneously knocked out. This study reveals a class of secreted toxic proteins essential for F. graminearum virulence.


Sujet(s)
Arabidopsis , Mort cellulaire , Fusarium , Nicotiana , Maladies des plantes , Fusarium/pathogénicité , Virulence , Arabidopsis/microbiologie , Arabidopsis/génétique , Maladies des plantes/microbiologie , Nicotiana/microbiologie , Nicotiana/génétique , Protéines fongiques/métabolisme , Protéines fongiques/génétique , Subtilisines/métabolisme , Subtilisines/génétique , Gossypium/microbiologie , Feuilles de plante/microbiologie , Cellules végétales/microbiologie
2.
Comp Immunol Microbiol Infect Dis ; 97: 101994, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-37207504

RÉSUMÉ

Spinal cord injury (SCI) can cause severe loss of locomotor and sensory activities, with no ideal treatment. Emerging reports suggest that the helminth therapy is highly effective in relieving numerous inflammatory diseases. Proteomic profiling is often used to elucidate the underlying mechanism behind SCI. Herein, we systematically compared the protein expression profiles of murine SCI spinal cord and Trichinella spiralis treated murine SCI spinal cord, using a 4D label-free technique known for its elevated sensitivity. Relative to the SCI mice, the T. spiralis-treated mice exhibited marked alterations in 91 proteins (31 up- and 60 down-regulated). Based on our Gene Ontology (GO) functional analysis, the differentially expressed proteins (DEPs) were primarily enriched in the processes of metabolism, biological regulation, cellular process, antioxidant activity, and other cell functions. In addition, according to the Clusters of Orthologous Groups of protein/EuKaryotic Orthologous Groups (COG/KOG) functional stratification, proteins involved in signaling transduction mechanisms belonged to the largest category. Over-expressed DEPs were also enriched in the "NADPH oxidase complex", "superoxide anion generation", "other types of O-glycan biosynthesis", and "HIF-1 signaling pathway". Furthermore, the protein-protein interaction (PPI) network identified the leading 10 hub proteins. In conclusion, we highlighted the dynamic proteomic profiling of T. spiralis-treated SCI mice. Our findings provide significant insight into the molecular mechanism behind T. spiralis regulation of SCI.


Sujet(s)
Traumatismes de la moelle épinière , Trichinella spiralis , Souris , Animaux , Trichinella spiralis/composition chimique , Trichinella spiralis/métabolisme , Protéomique/méthodes , Traumatismes de la moelle épinière/génétique , Traumatismes de la moelle épinière/médecine vétérinaire
3.
PLoS Pathog ; 19(4): e1011346, 2023 04.
Article de Anglais | MEDLINE | ID: mdl-37083862

RÉSUMÉ

Oomycetes are a group of filamentous microorganisms that include some of the biggest threats to food security and natural ecosystems. However, much of the molecular basis of the pathogenesis and the development in these organisms remains to be learned, largely due to shortage of efficient genetic manipulation methods. In this study, we developed modified transformation methods for two important oomycete species, Phytophthora infestans and Plasmopara viticola, that bring destructive damage in agricultural production. As part of the study, we established an improved Agrobacterium-mediated transformation (AMT) method by prokaryotic expression in Agrobacterium tumefaciens of AtVIP1 (VirE2-interacting protein 1), an Arabidopsis bZIP gene required for AMT but absent in oomycetes genomes. Using the new method, we achieved an increment in transformation efficiency in two P. infestans strains. We further obtained a positive GFP transformant of P. viticola using the modified AMT method. By combining this method with the CRISPR/Cas12a genome editing system, we successfully performed targeted mutagenesis and generated loss-of-function mutations in two P. infestans genes. We edited a MADS-box transcription factor-encoding gene and found that a homozygous mutation in MADS-box results in poor sporulation and significantly reduced virulence. Meanwhile, a single-copy avirulence effector-encoding gene Avr8 in P. infestans was targeted and the edited transformants were virulent on potato carrying the cognate resistance gene R8, suggesting that loss of Avr8 led to successful evasion of the host immune response by the pathogen. In summary, this study reports on a modified genetic transformation and genome editing system, providing a potential tool for accelerating molecular genetic studies not only in oomycetes, but also other microorganisms.


Sujet(s)
Écosystème , Phytophthora infestans , Phytophthora infestans/génétique , Agrobacterium tumefaciens/génétique , Virulence/génétique , Mutation
4.
EMBO Rep ; 23(2): e53817, 2022 02 03.
Article de Anglais | MEDLINE | ID: mdl-35041234

RÉSUMÉ

Mitogen-activated protein kinase (MAPK) cascades are important signaling modules regulating diverse biological processes. During the past 20 years, much progress has been made on the functions of MAPK cascades in plants. This review summarizes the roles of MAPKs, known MAPK substrates, and our current understanding of MAPK cascades in plant development and innate immunity. In addition, recent findings on the molecular links connecting surface receptors to MAPK cascades and the mechanisms underlying MAPK signaling specificity are also discussed.


Sujet(s)
Phénomènes biologiques , Système de signalisation des MAP kinases , Mitogen-Activated Protein Kinases/génétique , Mitogen-Activated Protein Kinases/métabolisme , Développement des plantes , Transduction du signal
5.
Nature ; 598(7881): 500-503, 2021 10.
Article de Anglais | MEDLINE | ID: mdl-34544113

RÉSUMÉ

Plant immune responses are mainly activated by two types of receptor. Pattern recognition receptors localized on the plasma membrane perceive extracellular microbial features, and nucleotide-binding leucine-rich repeat receptors (NLRs) recognize intracellular effector proteins from pathogens1. NLRs possessing amino-terminal Toll/interleukin-1 receptor (TIR) domains activate defence responses via the NADase activity of the TIR domain2,3. Here we report that activation of TIR signalling has a key role in pattern-triggered immunity (PTI) mediated by pattern recognition receptors. TIR signalling mutants exhibit attenuated PTI responses and decreased resistance against pathogens. Consistently, PTI is compromised in plants with reduced NLR levels. Treatment with the PTI elicitor flg22 or nlp20 rapidly induces many genes encoding TIR-domain-containing proteins, which is likely to be responsible for activating TIR signalling during PTI. Overall, our study reveals that activation of TIR signalling is an important mechanism for boosting plant defence during PTI.


Sujet(s)
Arabidopsis/immunologie , Immunité des plantes , Domaines protéiques , Récepteurs à l'interleukine-1/composition chimique , Récepteurs de reconnaissance de motifs moléculaires/immunologie , Transduction du signal , Récepteurs de type Toll/composition chimique , Arabidopsis/génétique , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Carboxylic ester hydrolases/génétique , Protéines de liaison à l'ADN/génétique , Protein kinases/métabolisme , Protein-Serine-Threonine Kinases/génétique , Protein-Serine-Threonine Kinases/métabolisme , Pseudomonas syringae/immunologie , Pseudomonas syringae/physiologie , Récepteurs de surface cellulaire/métabolisme , Nicotiana/génétique , Ubiquitin-protein ligases
6.
Plant J ; 105(2): 505-517, 2021 01.
Article de Anglais | MEDLINE | ID: mdl-33145833

RÉSUMÉ

When encountering microbial pathogens, plant cells can recognize danger signals derived from pathogens, activate plant immune responses and generate cell-autonomous as well as non-cell-autonomous defense signaling molecules, which promotes defense responses at the infection site and in the neighboring cells. Meanwhile, local damages can result in the release of immunogenic signals including damage-associated molecule patterns and phytocytokines, which also serve as danger signals to potentiate immune responses in cells surrounding the infection site. Activation of local defense responses further induces the production of long-distance defense signals, which can move to distal tissue to activate systemic acquired resistance. In this review, we summarize current knowledge on various signaling molecules involved in short- and long-distance defense signaling, and emphasize the roles of regulatory proteins involved in the processes.


Sujet(s)
Immunité des plantes , Transduction du signal , Cytokines/métabolisme , Cytokines/physiologie , Protéines et peptides de signalisation intercellulaire/métabolisme , Protéines et peptides de signalisation intercellulaire/physiologie , Maladies des plantes/immunologie , Maladies des plantes/microbiologie , Facteur de croissance végétal/métabolisme , Facteur de croissance végétal/physiologie , Protéines végétales/métabolisme , Protéines végétales/physiologie , Plantes/immunologie , Plantes/métabolisme
7.
Plant Cell ; 32(12): 4002-4016, 2020 12.
Article de Anglais | MEDLINE | ID: mdl-33037144

RÉSUMÉ

The plant defense hormone salicylic acid (SA) is perceived by two classes of receptors, NPR1 and NPR3/NPR4. They function in two parallel pathways to regulate SA-induced defense gene expression. To better understand the roles of the SA receptors in plant defense, we systematically analyzed their contributions to different aspects of Arabidopsis (Arabidopsis thaliana) plant immunity using the SA-insensitive npr1-1 npr4-4D double mutant. We found that perception of SA by NPR1 and NPR4 is required for activation of N-hydroxypipecolic acid biosynthesis, which is essential for inducing systemic acquired resistance. In addition, both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) are severely compromised in the npr1-1 npr4-4D double mutant. Interestingly, the PTI and ETI attenuation in npr1-1 npr4-4D is more dramatic compared with the SA-induction deficient2-1 (sid2-1) mutant, suggesting that the perception of residual levels of SA in sid2-1 also contributes to immunity. Furthermore, NPR1 and NPR4 are involved in positive feedback amplification of SA biosynthesis and regulation of SA homeostasis through modifications including 5-hydroxylation and glycosylation. Thus, the SA receptors NPR1 and NPR4 play broad roles in plant immunity.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/physiologie , Immunité des plantes , Acide salicylique/métabolisme , Arabidopsis/génétique , Arabidopsis/immunologie , Protéines d'Arabidopsis/génétique , Régulation de l'expression des gènes végétaux , Glycosylation , Homéostasie , Hydroxylation , Mutation , Transduction du signal
8.
Mol Plant ; 13(1): 144-156, 2020 01 06.
Article de Anglais | MEDLINE | ID: mdl-31733371

RÉSUMÉ

Two signal molecules, salicylic acid (SA) and N-hydroxypipecolic acid (NHP), play critical roles in plant immunity. The biosynthetic genes of both compounds are positively regulated by master immune-regulating transcription factors SARD1 and CBP60g. However, the relationship between the SA and NHP pathways is unclear. CALMODULIN-BINDING TRANSCRIPTION FACTOR 1 (CAMTA1), CAMTA2, and CAMTA3 are known redundant negative regulators of plant immunity, but the underlying mechanism also remains largely unknown. In this study, through chromatin immunoprecipitation and electrophoretic mobility shift assays, we uncovered that CBP60g is a direct target of CAMTA3, which also negatively regulates the expression of SARD1, presumably via an indirect effect. The autoimmunity of camta3-1 is suppressed by sard1 cbp60g double mutant as well as ald1 and fmo1, two single mutants defective in NHP biosynthesis. Interestingly, a suppressor screen conducted in the camta1/2/3 triple mutant background yielded various mutants blocking biosynthesis or signaling of either SA or NHP, leading to nearly complete suppression of the extreme autoimmunity of camta1/2/3, suggesting that the SA and NHP pathways can mutually amplify each other. Together, these results reveal that CAMTAs repress the biosynthesis of SA and NHP by modulating the expression of SARD1 and CBP60g, and that the SA and NHP pathways are coordinated to optimize plant immune response.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/génétique , Protéines de liaison à la calmoduline/métabolisme , Acides pipécoliques/métabolisme , Acide salicylique/métabolisme , Facteurs de transcription/métabolisme , Arabidopsis/immunologie , Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Protéines de liaison à la calmoduline/génétique , Immunoprécipitation de la chromatine , Régulation de l'expression des gènes végétaux , Intramolecular transferases/métabolisme , Mutation , Immunité des plantes , Régions promotrices (génétique) , Transduction du signal
9.
New Phytol ; 221(4): 1906-1918, 2019 03.
Article de Anglais | MEDLINE | ID: mdl-30252136

RÉSUMÉ

TGACG-BINDING FACTORs (TGAs) control the developmental or defense-related processes. In Arabidopsis thaliana, the functions of at least TGA2 and PERIANTHIA (PAN) can be repressed by interacting with CC-type glutaredoxins, which have the potential to control the redox state of target proteins. As TGA1 can be redox modulated in planta, we analyzed whether some of the 21 CC-type glutaredoxins (ROXYs) encoded in the Arabidopsis genome can influence TGA1 activity in planta and whether the redox active cysteines of TGA1 are functionally important. We show that the tga1 tga4 mutant and plants ectopically expressing ROXY8 or ROXY9 are impaired in hyponastic growth. As expression of ROXY8 and ROXY9 is activated upon transfer of plants from hyponasty-inducing low light to normal light, they might interfere with the growth-promoting function of TGA1/TGA4 to facilitate reversal of hyponastic growth. The redox-sensitive cysteines of TGA1 are not required for induction or reversal of hyponastic growth. TGA1 and TGA4 interact with ROXYs 8, 9, 18, and 19/GRX480, but ectopically expressed ROXY18 and ROXY19/GRX480 do not interfere with hyponastic growth. Our results therefore demonstrate functional specificities of individual ROXYs for distinct TGAs despite promiscuous protein-protein interactions and point to different repression mechanisms, depending on the TGA/ROXY combination.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/croissance et développement , Glutarédoxines/métabolisme , Arabidopsis/effets des médicaments et des substances chimiques , Arabidopsis/génétique , Arabidopsis/effets des radiations , Protéines d'Arabidopsis/génétique , Domaine catalytique , Cystéine/métabolisme , Régulation de l'expression des gènes végétaux/effets des radiations , Gènes de plante , Glutarédoxines/génétique , Lumière , Modèles biologiques , Mutation/génétique , Végétaux génétiquement modifiés , Protoplastes/effets des médicaments et des substances chimiques , Protoplastes/métabolisme , Protoplastes/effets des radiations , ARN messager/génétique , ARN messager/métabolisme , Acide salicylique/pharmacologie , Transcription génétique/effets des médicaments et des substances chimiques , Transcription génétique/effets des radiations , Transcriptome/effets des médicaments et des substances chimiques , Transcriptome/génétique , Transcriptome/effets des radiations
10.
Plant Physiol ; 178(3): 1284-1295, 2018 11.
Article de Anglais | MEDLINE | ID: mdl-30185442

RÉSUMÉ

Arabidopsis (Arabidopsis thaliana) MAP KINASE (MPK) proteins can function in multiple MAP kinase cascades and physiological processes. For instance, MPK4 functions in regulating development as well as in plant defense by participating in two independent MAP kinase cascades: the MEKK1-MKK1/MKK2-MPK4 cascade promotes basal resistance against pathogens and is guarded by the NB-LRR protein SUMM2, whereas the ANPs-MKK6-MPK4 cascade plays an essential role in cytokinesis. Here, we report a novel role for MKK6 in regulating plant immune responses. We found that MKK6 functions similarly to MKK1/MKK2 and works together with MEKK1 and MPK4 to prevent autoactivation of SUMM2-mediated defense responses. Interestingly, loss of MKK6 or ANP2/ANP3 results in constitutive activation of plant defense responses. The autoimmune phenotypes of mkk6 and anp2 anp3 mutant plants can be largely suppressed by a constitutively active mpk4 mutant. Further analysis showed that the constitutive defense response in anp2 anp3 is dependent on the defense regulators PAD4 and EDS1, but not on SUMM2, suggesting that the ANP2/ANP3-MKK6-MPK4 cascade may be guarded by a TIR-NB-LRR protein. Our study shows that MKK6 has multiple functions in plant defense responses in addition to cytokinesis.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/enzymologie , MAP Kinase Kinase 6/métabolisme , Système de signalisation des MAP kinases/immunologie , Mitogen-Activated Protein Kinase Kinases/métabolisme , Immunité des plantes , Arabidopsis/génétique , Arabidopsis/immunologie , Arabidopsis/physiologie , Protéines d'Arabidopsis/génétique , Protéines de transport/génétique , Protéines de transport/métabolisme , Cytocinèse , MAP Kinase Kinase 6/génétique , MAP Kinase Kinase Kinases/génétique , MAP Kinase Kinase Kinases/métabolisme , Mitogen-Activated Protein Kinase Kinases/génétique , Mitogen-Activated Protein Kinases/génétique , Mitogen-Activated Protein Kinases/métabolisme , Phénotype
11.
J Integr Plant Biol ; 60(11): 1023-1027, 2018 Nov.
Article de Anglais | MEDLINE | ID: mdl-30007010

RÉSUMÉ

Salicylic acid (SA) is an essential defence hormone in plants. Upon pathogen infection, induced biosynthesis of SA is mediated by Isochorismate synthase 1 (ICS1), whose gene transcription is controlled mainly through two redundant transcription factors, SAR Deficient 1 (SARD1) and Calmodulin-binding protein 60-like g (CBP60g). Although these master transcription factors regulate not only positive, but also negative regulators of immunity, how they control signaling events downstream of different immune receptors is unclear. Using autoimmune mutants activating immunity mediated by different receptors we show that, although the sard1 cbp60g double mutant almost fully suppresses the activation of defence mediated by suppressor of npr1-1, constitutive 2 (snc2), it strikingly enhances snc1, which carries a gain-of-function mutation in an intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptor. This negative regulation of immunity is achieved through the transcriptional regulation of negative regulators, such as Nudix hydrolase homolog 6 (NUDT6). Our study highlights the diverse roles, especially the negative ones, in the regulation of plant immunity by the two master immune transcription factors SARD1 and CBP60g.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Protéines de liaison à la calmoduline/métabolisme , Intramolecular transferases/métabolisme , Immunité des plantes/physiologie , Facteurs de transcription/métabolisme , Protéines d'Arabidopsis/génétique , Protéines de liaison à la calmoduline/génétique , Régulation de l'expression des gènes végétaux , Intramolecular transferases/génétique , Immunité des plantes/génétique , Protéines végétales/génétique , Protéines végétales/métabolisme , Facteurs de transcription/génétique
12.
EMBO Rep ; 19(7)2018 07.
Article de Anglais | MEDLINE | ID: mdl-29789386

RÉSUMÉ

Mitogen-activated protein kinase (MAPK) signaling plays important roles in diverse biological processes. In Arabidopsis, MPK3/MPK6, MKK4/MKK5, and the MAPKKK YODA (YDA) form a MAPK pathway that negatively regulates stomatal development. Brassinosteroid (BR) stimulates this pathway to inhibit stomata production. In addition, MPK3/MPK6 and MKK4/MKK5 also serve as critical signaling components in plant immunity. Here, we report that MAPKKK3/MAPKKK5 form a kinase cascade with MKK4/MKK5 and MPK3/MPK6 to transduce defense signals downstream of multiple plant receptor kinases. Loss of MAPKKK3/MAPKKK5 leads to reduced activation of MPK3/MPK6 in response to different pathogen-associated molecular patterns (PAMPs) and increased susceptibility to pathogens. Surprisingly, developmental defects caused by silencing of YDA are suppressed in the mapkkk3 mapkkk5 double mutant. On the other hand, loss of YDA or blocking BR signaling leads to increased PAMP-induced activation of MPK3/MPK6. These results reveal antagonistic interactions between a developmental MAPK pathway and an immune signaling MAPK pathway.


Sujet(s)
Arabidopsis/génétique , Brassinostéroïdes/immunologie , Développement des plantes/génétique , Immunité des plantes/génétique , Arabidopsis/immunologie , Protéines d'Arabidopsis/génétique , Brassinostéroïdes/métabolisme , Régulation de l'expression des gènes végétaux/génétique , MAP Kinase Kinase Kinases/génétique , Système de signalisation des MAP kinases/génétique , Mitogen-Activated Protein Kinase Kinases/génétique , Mitogen-Activated Protein Kinases/génétique , Phosphorylation , Développement des plantes/immunologie , Végétaux génétiquement modifiés/génétique
13.
Cell ; 173(6): 1454-1467.e15, 2018 05 31.
Article de Anglais | MEDLINE | ID: mdl-29656896

RÉSUMÉ

Salicylic acid (SA) is a plant defense hormone required for immunity. Arabidopsis NPR1 and NPR3/NPR4 were previously shown to bind SA and all three proteins were proposed as SA receptors. NPR1 functions as a transcriptional co-activator, whereas NPR3/NPR4 were suggested to function as E3 ligases that promote NPR1 degradation. Here we report that NPR3/NPR4 function as transcriptional co-repressors and SA inhibits their activities to promote the expression of downstream immune regulators. npr4-4D, a gain-of-function npr4 allele that renders NPR4 unable to bind SA, constitutively represses SA-induced immune responses. In contrast, the equivalent mutation in NPR1 abolishes its ability to bind SA and promote SA-induced defense gene expression. Further analysis revealed that NPR3/NPR4 and NPR1 function independently to regulate SA-induced immune responses. Our study indicates that both NPR1 and NPR3/NPR4 are bona fide SA receptors, but play opposite roles in transcriptional regulation of SA-induced defense gene expression.


Sujet(s)
Protéines d'Arabidopsis/physiologie , Arabidopsis/physiologie , Immunité des plantes , Expression des gènes , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes végétaux , Génotype , Mutation , Maladies des plantes , Facteur de croissance végétal/physiologie , Acide salicylique , Graines/physiologie , Transduction du signal , Facteurs de transcription/physiologie , Ubiquitin-protein ligases/physiologie
14.
New Phytol ; 217(1): 344-354, 2018 Jan.
Article de Anglais | MEDLINE | ID: mdl-28898429

RÉSUMÉ

Salicylic acid (SA) and pipecolic acid (Pip) play important roles in plant immunity. Here we analyzed the roles of transcription factors TGACG-BINDING FACTOR 1 (TGA1) and TGA4 in regulating SA and Pip biosynthesis in Arabidopsis thaliana. We quantified the expression levels of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) and CALMODULIN-BINDING PROTEIN 60g (CBP60g), which encode two master transcription factors of plant immunity, and the accumulation of SA and Pip in tga1-1 tga4-1 mutant plants. We tested whether SARD1 and CBP60g are direct targets of TGA1 by chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR). In addition to promoting pathogen-induced SA biosynthesis, we found that SARD1 and CBP60g also positively regulated Pip biosynthesis by targeting genes encoding key biosynthesis enzymes of Pip. TGA1/TGA4 were required for full induction of SARD1 and CBP60g in plant defense. ChIP-PCR analysis showed that SARD1 was a direct target of TGA1. In tga1-1 tga4-1 mutant plants, the expression levels of SARD1 and CBP60g along with SA and Pip accumulation following pathogen infection were dramatically reduced compared with those in wild-type plants. Consistent with reduced expression of SARD1 and CBP60g, pathogen-associated molecular pattern (PAMP)-induced pathogen resistance and systemic acquired resistance were compromised in tga1-1 tga4-1. Our study showed that TGA1 and TGA4 regulate Pip and SA biosynthesis by modulating the expression of SARD1 and CBP60g.


Sujet(s)
Arabidopsis/génétique , Facteurs de transcription à motif basique et à glissière à leucines/métabolisme , Acides pipécoliques/métabolisme , Acide salicylique/métabolisme , Arabidopsis/immunologie , Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Facteurs de transcription à motif basique et à glissière à leucines/génétique , Protéines de liaison à la calmoduline/génétique , Protéines de liaison à la calmoduline/métabolisme , Mutation , Immunité des plantes
15.
Front Plant Sci ; 8: 2145, 2017.
Article de Anglais | MEDLINE | ID: mdl-29326742

RÉSUMÉ

Salicylic acid (SA) is a key signaling molecule in plant immunity. Two types of SA receptors, NPR1 and NPR3/NPR4, were reported to be involved in the perception of SA in Arabidopsis. SA is also synthesized in the non-vascular moss Physcomitrella patens following pathogen infection. Sequence analysis revealed that there is only one NPR1/NPR3/NPR4-like protein in P. patens. This agrees with the phylogenetic study that showed the divergence of NPR1 and NPR3/NPR4 from the same ancestor during the evolution of higher plants. Intriguingly, expression of the P. patens NPR1/NPR3/NPR4-like gene in Arabidopsis does not complement the constitutive defense phenotype of the npr3 npr4 double mutant, but can partially rescue the mutant phenotypes of npr1-1, suggesting that it functions as an NPR1-like positive regulator of SA-mediated immunity and P. patens does not have an SA receptor functioning similarly as NPR3/NPR4. Future characterization of the P. patens NPR1-like protein and analysis of its functions through knockout and biochemical approaches will help us better understand how SA is perceived and what its functions are in P. patens.

16.
Plant Physiol ; 171(2): 1344-54, 2016 06.
Article de Anglais | MEDLINE | ID: mdl-27208222

RÉSUMÉ

Salicylic acid (SA) serves as a critical signaling molecule in plant defense. Two transcription factors, SARD1 and CBP60g, control SA biosynthesis through regulating pathogen-induced expression of Isochorismate Synthase1, which encodes a key enzyme for SA biosynthesis. Here, we report that Pattern-Triggered Immunity Compromised Receptor-like Cytoplasmic Kinase1 (PCRK1) and PCRK2 function as key regulators of SA biosynthesis. In the pcrk1 pcrk2 double mutant, pathogen-induced expression of SARD1, CBP60g, and ICS1 is greatly reduced. The pcrk1 pcrk2 double mutant, but neither of the single mutants, exhibits reduced accumulation of SA and enhanced disease susceptibility to bacterial pathogens. Both PCRK1 and PCRK2 interact with the pattern recognition receptor FLS2, and treatment with pathogen-associated molecular patterns leads to rapid phosphorylation of PCRK2. Our data suggest that PCRK1 and PCRK2 function downstream of pattern recognition receptor in a signal relay leading to the activation of SA biosynthesis.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Récepteurs de reconnaissance de motifs moléculaires/métabolisme , Acide salicylique/métabolisme , Adénosine triphosphate/métabolisme , Arabidopsis/génétique , Arabidopsis/microbiologie , Sites de fixation , Séquence conservée , ADN bactérien/génétique , Résistance à la maladie/immunologie , Régulation de l'expression des gènes végétaux , Techniques de knock-out de gènes , Mutation/génétique , Molécules contenant des motifs associés aux pathogènes/métabolisme , Phosphorylation , Maladies des plantes/immunologie , Maladies des plantes/microbiologie , Immunité des plantes , Protein kinases/métabolisme , Pseudomonas syringae/physiologie
17.
PLoS One ; 10(3): e0120245, 2015.
Article de Anglais | MEDLINE | ID: mdl-25775181

RÉSUMÉ

The receptor-like kinase SUPPRESSOR OF BIR1, 1 (SOBIR1) functions as a critical regulator in plant immunity. It is required for activation of cell death and defense responses in Arabidopsis bak1-interacting receptor-like kinase 1,1 (bir1-1) mutant plants. Here we report that the ER quality control component UDP-glucose:glycoprotein glucosyltransferase (UGGT) is required for the biogenesis of SOBIR1 and mutations in UGGT suppress the spontaneous cell death and constitutive defense responses in bir1-1. Loss of function of STT3a, which encodes a subunit of the oligosaccharyltransferase complex, also suppresses the autoimmune phenotype in bir1-1. However, it has no effect on the accumulation of SOBIR1, suggesting that additional signaling components other than SOBIR1 may be regulated by ER quality control. Our study provides clear evidence that ER quality control play critical roles in regulating defense activation in bir1-1.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Réticulum endoplasmique/métabolisme , Glucosyltransferases/métabolisme , Hexosyltransferases/métabolisme , Protein kinases/métabolisme , Arabidopsis/génétique , Arabidopsis/immunologie , Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Résistance à la maladie/génétique , Résistance à la maladie/immunologie , Ordre des gènes , Locus génétiques , Mutation , Phénotype , Immunité des plantes/génétique , Maturation post-traductionnelle des protéines
18.
Nat Commun ; 6: 10159, 2015 12 18.
Article de Anglais | MEDLINE | ID: mdl-27206545

RÉSUMÉ

Recognition of pathogens by host plants leads to rapid transcriptional reprogramming and activation of defence responses. The expression of many defence regulators is induced in this process, but the mechanisms of how they are controlled transcriptionally are largely unknown. Here we use chromatin immunoprecipitation sequencing to show that the transcription factors SARD1 and CBP60g bind to the promoter regions of a large number of genes encoding key regulators of plant immunity. Among them are positive regulators of systemic immunity and signalling components for effector-triggered immunity and PAMP-triggered immunity, which is consistent with the critical roles of SARD1 and CBP60g in these processes. In addition, SARD1 and CBP60g target a number of genes encoding negative regulators of plant immunity, suggesting that they are also involved in negative feedback regulation of defence responses. Based on these findings we propose that SARD1 and CBP60g function as master regulators of plant immune responses.


Sujet(s)
Protéines d'Arabidopsis/génétique , Arabidopsis/génétique , Protéines de liaison à la calmoduline/génétique , Régulation de l'expression des gènes végétaux , Maladies des plantes/génétique , Immunité des plantes/génétique , Arabidopsis/immunologie , Arabidopsis/microbiologie , Protéines d'Arabidopsis/immunologie , Séquence nucléotidique , Sites de fixation , Protéines de liaison à la calmoduline/immunologie , Immunoprécipitation de la chromatine , Rétrocontrôle physiologique , Séquençage nucléotidique à haut débit , Mutation , Maladies des plantes/immunologie , Maladies des plantes/microbiologie , Régions promotrices (génétique) , Liaison aux protéines , Pseudomonas syringae/pathogénicité , Pseudomonas syringae/physiologie , Transduction du signal , Transcription génétique
19.
Plant J ; 79(3): 427-39, 2014 Aug.
Article de Anglais | MEDLINE | ID: mdl-24889324

RÉSUMÉ

Heat shock proteins (HSPs) serve as molecular chaperones for diverse client proteins in many biological processes. In plant immunity, cytosolic HSP90s participate in the assembly, stability control and/or activation of immune receptor complexes. In this paper we report that in addition to the well-established positive roles that HSP90 isoforms play in plant immunity, they are also involved in the negative regulation of immune receptor accumulation. Point mutations in two HSP90 genes, HSP90.2 and HSP90.3, were identified from a forward genetic screen designed to isolate mutants with enhanced disease resistance. We found that specific mutations in HSP90.2 and HSP90.3 lead to heightened accumulation of immune receptors, including SNC1, RPS2 and RPS4. HSP90s may assist SGT1 in the formation of SCF E3 ubiquitin ligase complexes that target immune receptors for degradation. Such regulation is critical for maintaining appropriate levels of immune receptor proteins to avoid autoimmunity.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/métabolisme , Protéines du choc thermique HSP90/métabolisme , Arabidopsis/immunologie , Protéines d'Arabidopsis/génétique , Glucosyltransferases/génétique , Glucosyltransferases/métabolisme , Protéines du choc thermique HSP90/génétique , Immunité des plantes/génétique , Immunité des plantes/immunologie , Protéines végétales/génétique , Protéines végétales/métabolisme , SKP cullin F-box protein ligases/génétique , SKP cullin F-box protein ligases/métabolisme
20.
Plant J ; 77(5): 748-56, 2014 Mar.
Article de Anglais | MEDLINE | ID: mdl-24498907

RÉSUMÉ

Receptor-like kinases play diverse roles in plant biology. Arabidopsis BAK1-INTERACTING RECEPTOR-LIKE KINASE 1 (BIR1) functions as a negative regulator of plant immunity. bir1-1 mutant plants display spontaneous cell death and constitutive defense responses that are dependent on SUPPRESSOR OF BIR1,1 (SOBIR1) and PHYTOALEXIN DEFICIENT4 (PAD4). Here we report that mutations in three components of ER quality control, CALRETICULIN3 (CRT3), ER-LOCALIZED DnaJ-LIKE PROTEIN 3b (ERdj3b) and STROMAL-DERIVED FACTOR-2 (SDF2), also suppress the spontaneous cell death and constitutive defense responses in bir1-1. Further analysis revealed that accumulation of the SOBIR1 protein is reduced in crt3-1 and erdj3b-1 mutant plants. These data suggest that ER quality control plays important roles in the biogenesis of SOBIR1, and is required for cell death and defense responses in bir1-1.


Sujet(s)
Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Arabidopsis/physiologie , Réticulum endoplasmique/physiologie , Protéines du choc thermique HSP40/métabolisme , Protein kinases/métabolisme , Protein-Serine-Threonine Kinases/génétique , Allèles , Calréticuline/métabolisme , Carboxylic ester hydrolases/métabolisme , Mort cellulaire , Phénotype , Immunité des plantes , Récepteurs de reconnaissance de motifs moléculaires/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...