Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Hazard Mater ; 476: 135031, 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-38943889

RÉSUMÉ

Faced with the escalating challenge of global plastic pollution, this study specifically addresses the research gap in the biodegradation of polystyrene (PS). A PS-degrading bacterial strain was isolated from the gut of Tenebrio molitor, and genomics, molecular docking, and proteomics were employed to thoroughly investigate the biodegradation mechanisms of Pseudomonas putida H-01 against PS. Using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (ATR-FTIR), and contact angle analysis, significant morphological and structural changes in the PS films under the influence of the H-01 strain were observed. The study revealed several potential degradation genes and ten enzymes that were specifically upregulated in the PS degradation environment. Additionally, a novel protein with laccase-like activity, LacQ1, was purified from this strain for the first time, and its crucial role in the PS degradation process was confirmed. Through molecular docking and molecular dynamics (MD) simulations, the interactions between the enzymes and PS were detailed, elucidating the binding and catalytic mechanisms of the degradative enzymes with the substrate. These findings have deepened our understanding of PS degradation.


Sujet(s)
Dépollution biologique de l'environnement , Simulation de docking moléculaire , Polystyrènes , Polystyrènes/composition chimique , Polystyrènes/métabolisme , Pseudomonas putida/métabolisme , Pseudomonas putida/génétique , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Protéines bactériennes/composition chimique , Génomique , Animaux , Simulation de dynamique moléculaire , Laccase/métabolisme , Laccase/génétique , Laccase/composition chimique
2.
J Environ Manage ; 357: 120653, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38574704

RÉSUMÉ

In this research, we established an enhanced aerobic biological method utilizing a high-density bacterial flora for the treatment of low-biochemical plating parts washing wastewater. The elucidation of pollutant removal mechanisms was achieved through a comprehensive analysis of changes in sludge characteristics and bacterial community structure. The results demonstrated that throughout the operational period, the organic load remained stable within the range of 0.01-0.02 kgCOD/kgMLSS·d, the BOD5/COD ratio increased from 0.004 mg/L to 0.33 mg/L, and the average removal rates for key pollutants, including COD, NH4+-N, and TN, reached 98.13%, 99.86%, and 98.09%. MLSS concentration remained at 7627 mg/L, indicating a high-density flora. Notably, Proteobacteria, Bacteroidota, and Acidobacteriota, which have the ability to degrade large organic molecules, had been found in the system. This study affirms the efficacy of the intensive aerobic biological method for treating low-biochemical plating washing wastewater while ensuring system stability.


Sujet(s)
Polluants environnementaux , Eaux usées , Élimination des déchets liquides/méthodes , Bioréacteurs/microbiologie , Azote/analyse , Eaux d'égout/composition chimique , Bactéries/métabolisme , Polluants environnementaux/analyse
3.
Chemosphere ; 358: 142146, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38677604

RÉSUMÉ

Estradiol (E2), an endocrine disruptor, acts by mimicking or interfering with the normal physiological functions of natural hormones within organisms, leading to issues such as endocrine system disruption. Notably, seasonal fluctuations in environmental temperature may influence the degradation speed of estradiol (E2) in the natural environment, intensifying its potential health and ecological risks. Therefore, this study aims to explore how bacteria can degrade E2 under low-temperature conditions, unveiling their resistance mechanisms, with the goal of developing new strategies to mitigate the threat of E2 to health and ecological safety. In this paper, we found that Rhodococcus equi DSSKP-R-001 (R-001) can efficiently degrade E2 at 30 °C and 10 °C. Six genes in R-001 were shown to be involved in E2 degradation by heterologous expression at 30 °C. Among them, 17ß-HSD, KstD2, and KstD3, were also involved in E2 degradation at 10 °C; KstD was not previously known to degrade E2. RNA-seq was used to characterize differentially expressed genes (DEGs) to explore the stress response of R-001 to low-temperature environments to elucidate the strain's adaptation mechanism. At the low temperature, R-001 cells changed from a round spherical shape to a long rod or irregular shape with elevated unsaturated fatty acids and were consistent with the corresponding genetic changes. Many differentially expressed genes linked to the cold stress response were observed. R-001 was found to upregulate genes encoding cold shock proteins, fatty acid metabolism proteins, the ABC transport system, DNA damage repair, energy metabolism and transcriptional regulators. In this study, we demonstrated six E2 degradation genes in R-001 and found for the first time that E2 degradation genes have different expression characteristics at 30 °C and 10 °C. Linking R-001 to cold acclimation provides new insights and a mechanistic basis for the simultaneous degradation of E2 under cold stress in Rhodococcus adaptation.


Sujet(s)
Dépollution biologique de l'environnement , Basse température , Oestradiol , Rhodococcus , Rhodococcus/génétique , Rhodococcus/physiologie , Rhodococcus/métabolisme , Oestradiol/métabolisme , Perturbateurs endocriniens/toxicité , Stress physiologique/génétique , Régulation de l'expression des gènes bactériens , Expression des gènes/effets des médicaments et des substances chimiques
4.
Eur J Med Res ; 29(1): 193, 2024 Mar 25.
Article de Anglais | MEDLINE | ID: mdl-38528571

RÉSUMÉ

BACKGROUND: Hyperspectral techniques have aroused great interest in non-invasively measuring periodontal tissue hemodynamics. However, current studies mainly focused on three typical inflammation stages (healthy, gingivitis and periodontitis) and practical approaches for using optical spectroscopy for early and precisely detection of periodontal inflammation at finer disease stages have not been well studied. METHODS: This study provided novel spectroscopic insights into periodontitis at different stages of disease, and developed six simple but physically meaning hemodynamic spectral indices (HSIs) including four spectral absorption depths of oxyhemoglobin ( D HbO 2 ), deoxyhemoglobin ( D Hb ), total hemoglobin ( t Hb ) and tissue water ( D water ), and two normalized difference indices of oxyhemoglobin( N D HbO 2 I ) and deoxyhemoglobin ( N D Hb I ) from continuum-removal spectra (400-1700 nm) of periodontal tissue collected from 47 systemically healthy subjects over different severities from healthy, gingivitis, slight, moderate to severe periodontitis for early and precision diagnostics of periodontitis. Typical statistical analyses were conducted to explore the effectiveness of the proposed HSIs. RESULTS: D Hb and t Hb exerted significant increasing trends as inflammation progressed, whereas D HbO 2 exhibited significant difference (P < 0.05) from the healthy sites only at moderate and severe periodontitis and D water presented unstable sensitives to disease severity. By contrast, N D HbO 2 I and N D Hb I showed more steadily downward trends as severity increased, and demonstrated the highest correlations with clinical gold standard parameters. Particularly, the proposed normalized HSIs ( N D HbO 2 I and N D Hb I ) yielded high correlations of - 0.49 and - 0.44 with probing depth, respectively, far outperforming results achieved by previous studies. The performances of the HSIs were also confirmed using the periodontal therapy group. CONCLUSIONS: These results indicated great potentials of combination optical spectroscopy and smart devices to non-invasively probe periodontitis at earlier stages using the simple and practical HSIs. Trial registration This study was retrospectively registered in the Chinese Clinical Trial Registry on October 24, 2021, and the clinical registration number is ChiCTR2100052306.


Sujet(s)
Gingivite , Parodontite , Humains , Oxyhémoglobines/analyse , Parodontite/diagnostic , Gingivite/diagnostic , Inflammation/diagnostic , Eau , Hémodynamique
5.
Biotechnol Biofuels Bioprod ; 17(1): 2, 2024 Jan 03.
Article de Anglais | MEDLINE | ID: mdl-38172947

RÉSUMÉ

Lignin, a natural organic polymer that is recyclable and inexpensive, serves as one of the most abundant green resources in nature. With the increasing consumption of fossil fuels and the deterioration of the environment, the development and utilization of renewable resources have attracted considerable attention. Therefore, the effective and comprehensive utilization of lignin has become an important global research topic, with the goal of environmental protection and economic development. This review focused on the bacteria and enzymes that can bio-transform lignin, focusing on the main ways that lignin can be utilized to produce high-value chemical products. Bacillus has demonstrated the most prominent effect on lignin degradation, with 89% lignin degradation by Bacillus cereus. Furthermore, several bacterial enzymes were discussed that can act on lignin, with the main enzymes consisting of dye-decolorizing peroxidases and laccase. Finally, low-molecular-weight lignin compounds were converted into value-added products through specific reaction pathways. These bacteria and enzymes may become potential candidates for efficient lignin degradation in the future, providing a method for lignin high-value conversion. In addition, the bacterial metabolic pathways convert lignin-derived aromatics into intermediates through the "biological funnel", achieving the biosynthesis of value-added products. The utilization of this "biological funnel" of aromatic compounds may address the heterogeneous issue of the aromatic products obtained via lignin depolymerization. This may also simplify the separation of downstream target products and provide avenues for the commercial application of lignin conversion into high-value products.

6.
Environ Technol ; : 1-11, 2023 Nov 21.
Article de Anglais | MEDLINE | ID: mdl-38100606

RÉSUMÉ

The study proposed a method for determining total nitrogen (TN) content in activated sludge by ultrasound pre-treatment assisted wet method. Based on the single-factor experiment, with the TN content as the response value, the response surface methodology was employed to examine the individual and interactive effects of three factors: the dilution multiple of the sludge mixture, ultrasonic time, and ultrasonic power. At the same time, the physico-chemical parameters and the digestion-oxidation parameters were optimised. The results indicated that the optimal parameters were as follows; sludge dilution multiple of 225 times, stirring rate of 400 r/min, ultrasonic time of 22 minutes, ultrasonic power of 720 W, and optimal added volume of potassium persulfate at 8 mL with a digestion time of 40 minutes. The relative standard deviation (RSD) for the parallel determination of TN in sludge samples using ultrasonic pre-treatment assisted wet method was ≤2.77%, with a spike recovery rate of 98.49-101.43%. The method, ultrasonic pre-treatment assisted wet method to determine TN concentration in activated sludge, was simpler to operate, more accurate.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE