Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Sci Total Environ ; 806(Pt 4): 150879, 2022 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-34627893

RÉSUMÉ

Anaerobic ammonium-oxidizing (anammox) bacteria are iron abundant and depend heavily on iron-binding proteins. The iron demand of anammox bacteria is relatively large. However, it still remains some doubts where these large quantities of available iron come from and how they are regulated in anammox bacteria. Herein, iron-rich nanoparticles in anammoxosomes were detected by synchrotron soft X-ray tomography coupled with scanning transmission X-ray microscopy (STXM). The iron-rich nanoparticles were identified as ferric oxide (α-Fe2O3) mineral cores, and the local atomic structure of iron-rich nanoparticles was obtained by X-ray absorption fine-structure (XAFS) spectra. The bacterioferritin of Q1Q315 and Q1Q5F8 were detected by proteomics analysis. On this basis, the metabolic pathway centered on iron-rich nanoparticles was proposed.


Sujet(s)
Composés d'ammonium , Nanoparticules , Bactéries , Fer , Oxydoréduction
2.
Ying Yong Sheng Tai Xue Bao ; 30(5): 1651-1658, 2019 May.
Article de Chinois | MEDLINE | ID: mdl-31107022

RÉSUMÉ

Thinning, an important forest management strategy, can alter forest structure and stability, and consequently affect ecosystem biogeochemical cycles. The effects of thinning on soil carbon and nitrogen is far from conclusive especially due to the lack of long-term experiments. Here, we investigated soil carbon and nitrogen in Larix olgensis plantations in Mengjiagang Forest Farm, Heilongjiang Province, with four thinning treatments (i.e., 4 times low-intensity thinning, LT4; 3 times medium-intensity thinning, MT3; 2 times high-intensity thinning, HT2; and un-thinned control). The effects of thinning on soil total organic carbon and total nitrogen were examined from the perspective of the composition of labile and recalcitrant pools (labile carbon or nitrogen pool I; labile carbon or nitrogen pool II; and recalcitrant carbon or nitrogen pool) by an acid hydrolysis approach. The results showed that thinning significantly increased soil total organic carbon and nitrogen by 48.7%-50.3% and 28.9%-42.7%, respectively. The carbon and nitrogen contents in all the labile I, labile II, and recalcitrant pools were increased by thinning, with the magnitudes varying across different pools and thinning types. LT4, MT3, and HT2 improved the recalcitrant carbon by 71%, 69% and 75%, respectively, which was significantly higher than the increment of two labile carbon pools. In addition, the percentage of recalcitrant carbon in total organic carbon was increased by thinning. LT4 significantly increased microbial biomass and microbial quotient, but no significant change was found in MT3 and HT2 treatments. Overall, our results indicated that thinning might increase the input of soil recalcitrant carbon components such as suberin and lignin by producing more coarse woody residues, thus leading to decline of organic matter decomposition and ultimately enhancement of soil organic carbon.


Sujet(s)
Carbone/analyse , Science forêt/méthodes , Forêts , Larix/physiologie , Azote/analyse , Sol , Microbiologie du sol
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE