Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Oper Dent ; 49(3): 325-335, 2024 05 01.
Article de Anglais | MEDLINE | ID: mdl-38632867

RÉSUMÉ

OBJECTIVES: This study aimed to evaluate the impact of various commercial silane brands with varied chemical compositions with or without the application of an adhesive layer on the microshear bond strength and durability of a resin luting agent to lithium disilicate glass ceramic. METHODS AND MATERIALS: Lithium disilicate glass ceramic discs (EMX, IPS e.max Press, Ivoclar Vivadent) measuring 10 mm in diameter and 3 mm in thickness were fabricated (n=240). Surfaces were etched using 5% hydrofluoric acid and randomly assigned to 10 groups based on the commercial brand of silane used (n=24): [RP] RelyX Ceramic Primer (3M ESPE); [PS] Prosil (FGM); [SA] Silano (Angelus); [SM] Silano (Maquira); [SU] Silane (Ultradent); [GL] GLUMA Ceramic Primer (Kulzer); [CB] Ceramic Bond (VOCO); [MB] Monobond N (Ivoclar Vivadent); [CP] Clearfil Ceramic Primer (Kuraray); and [DE] 2-step silane (Dentsply Sirona). Half of the EMXs (n=12) received a thin adhesive layer (+) after the silane and prior to resin luting agent, while the other half (n=12) did not receive an adhesive layer (-). For the microshear bond strength test (µSBS), four light-cured resin luting agent cylinders (1 mm in diameter) were created on each EMX surface. Half of these specimens were tested after 24 hours, while the other half were stored in deionized water for 6 months. The µSBS test was conducted using a universal testing machine (DL 500, EMIC) at a crosshead speed of 1 mm/min until failure. The obtained data underwent statistical analysis using analysis of variance (ANOVA) and the Tukey test (α=0.05). RESULTS: There was significant influence of the silane commercial brand on bond strength. Notably, "universal primers" yielded lower bond strength results compared to "pure" silane solutions. Water storage had a detrimental effect on microshear bond strength for certain silane commercial brands. Additionally, the application of an adhesive layer negatively impacted bond strength results for all silanes. CONCLUSIONS: This study confirms the importance of both silane commercial brand and chemical composition in relation to bond strength of resin luting agents to lithium disilicate glass ceramic. Furthermore, the application of an adhesive layer may have an adverse effect on bond stability over time.


Sujet(s)
Céramiques , Collage dentaire , Porcelaine dentaire , Analyse du stress dentaire , Test de matériaux , Céments résine , Résistance au cisaillement , Silanes , Porcelaine dentaire/composition chimique , Silanes/composition chimique , Céramiques/composition chimique , Collage dentaire/méthodes , Céments résine/composition chimique , Propriétés de surface , Ciments dentaires/composition chimique , Mordançage à l'acide/méthodes , Humains
2.
Oper Dent ; 48(6): 700-710, 2023 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-37881098

RÉSUMÉ

OBJECTIVES: To evaluate the surface topography/roughness and bond strength of a resin luting agent to a lithium disilicate glass ceramic after etching with different concentrations of hydrofluoric acid (HF) and commercial brands. METHODS: For bond strength evaluation, 260 lithium disilicate glass ceramic (EMX) discs were randomly distributed into 13 groups based on concentrations of HF and commercial brands (n=20): 5% and 10%, Lysanda (LY5 and LY10); 5% and 10%, Maquira (MA5 and MA10); 5% and 10%, FGM (FG5 and FG10); 4.8%, Ivoclar Vivadent (IV5); 5% and 10%, PHS do Brasil (PH5 and PH10); 5% and 10%, BM4 (BM5 and BM10); 9%, Ultradent Inc (UL10); and Dentsply (DE10). A further random distribution (n=10) was made based on the application (+) or absence (-) of an adhesive layer. Resin luting agent cylinders (1 mm in diameter) were added on EMX surfaces, light-cured, and stored for 24 hours in deionized water at 37°C. On a universal testing machine (DL 500, EMIC), specimens were submitted to a microshear bond strength test at a crosshead speed of 1 mm/min until failure. A representative etched EMX disc from each group underwent surface topography analysis using field-emission scanning electron microscopy (n=1), and five (n=5) etched EMX discs from each group were tested for surface roughness. Data were statistically analyzed using analysis of variance and Tukey test (α=0.05). RESULTS: A less conditioned and smoother surface was observed for 5% HF compared to 10%. Additionally, commercial brands of HF were shown to affect bond strength. When the adhesive layer was not used (-), a 10% concentration promoted higher bond strengths to EMX. However, when adhesive was applied (+), the concentrations of HF and commercial brands had no effect on bond strength results. CONCLUSIONS: A 10% concentration of HF results in higher bond strength than a 5% concentration. If an adhesive layer is applied, neither this distinction nor the influence of commercial brands is observed.


Sujet(s)
Collage dentaire , Acide fluorhydrique , Acide fluorhydrique/composition chimique , Ciments dentaires , Propriétés de surface , Collage dentaire/méthodes , Test de matériaux , Céramiques/composition chimique , Porcelaine dentaire/composition chimique , Céments résine/composition chimique , Silanes
3.
Oper Dent ; 47(6): E264-E272, 2022 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-36322401

RÉSUMÉ

OBJECTIVES: To evaluate the bond strength of a resin luting agent to a lithium disilicate glass-ceramic after the use of different fit-checking materials and cleaning protocols. METHODS AND MATERIALS: Two hundred and forty-two (242) ceramic specimens were etched with 5% hydrofluoric acid for 20 seconds and distributed into 22 groups (n=10), in total. Four (4) groups were created based on fit-checking material and that had no following cleaning protocol: no fit-checking material used (control group); articulating paper; articulating spray; and fit-checker liquid. For each fit-checking material (3), 6 cleaning protocols were tested creating an additional 18 groups (n=10): air/water spray; 70% alcohol (ethanol); acetone; 35% phosphoric acid; 5% hydrofluoric acid; and a commercially available cleaning paste (Ivoclean, Ivoclar Vivadent). Silane and bonding resin were applied to all ceramic surfaces. Resin luting agent cylinders (1 mm in diameter) were created using silicone matrices, light-cured, and specimens were stored in deionized water at 37°C for 24 hours. Microshear bond strength test (µSBS) was performed on a universal testing machine (DL 500, EMIC) at a crosshead speed of 1 mm/min until failure. Results were statistically analyzed using ANOVA and Tukey's test (α=0.05). RESULTS: Articulating paper and fit-checker liquid, when not properly removed, negatively affected the bond strength (p<0.05). None of the tested cleaning protocols were effective for articulating paper (p<0.05). There was no significant difference in bond strength after the cleaning protocols between articulating spray and fit-checker liquid when compared to the control group (no contamination) (p>0.05). CONCLUSION: The cleaning protocols tested can effectively restore the bond strength of resin luting agents to lithium disilicate ceramics that were exposed to articulating spray or fit-checker liquid. The use of articulating paper is not recommended for fit-checking indirect lithium disilicate restorations.


Sujet(s)
Collage dentaire , Acide fluorhydrique , Acide fluorhydrique/composition chimique , Collage dentaire/méthodes , Analyse du stress dentaire , Test de matériaux , Porcelaine dentaire/usage thérapeutique , Porcelaine dentaire/composition chimique , Céramiques/usage thérapeutique , Céramiques/composition chimique , Céments résine/usage thérapeutique , Céments résine/composition chimique , Silanes/composition chimique , Eau/composition chimique , Propriétés de surface
4.
Oper Dent ; 47(2): E81-E90, 2022 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-35405008

RÉSUMÉ

The purposes of this study were to 1) evaluate the effectiveness of different cleaning methods from a previously etched and silanized lithium disilicate glass ceramic (EMX) surface after contact with organic fluids (saliva or human blood) and 2) assess the effect of applying a new silane layer after the cleaning methods on the microshear bond strength (mSBS) of resin cement to EMX. EMX discs were etched with 5% hydrofluoric acid (HF) and properly silanized. Three control groups were created (n=10): control (without contamination), saliva positive, and human blood positive. Later, after new contaminations, the samples were distributed into four groups according to the cleaning method (n=20): air-water spray (AWS), 35% phosphoric acid, 70% alcohol, or Ivoclean cleaning paste. After the cleaning methods, subgroups were submitted to a new silane layer application, or not (n=10). All samples received a thin layer of a bonding agent and, subsequently, three light-cured resin cement cylinders were prepared on each EMX surface for the mSBS test. This test was performed on a universal testing machine at a vertical speed of 1 mm/minute until rupture. Contaminated and cleaned silanized EMX surfaces were assessed by scanning electron microscopy (SEM) (n=1). The noncontaminated control group showed an average mSBS of 18.7 MPa, and the positive saliva and human blood control groups yielded a 34% and 42% reduction in bond strength, respectively, compared to the uncontaminated control (p<0.05). For saliva-contaminated surfaces, all cleaning methods were effective and not different from one another or the control group (p>0.05). However, for human blood contamination, only Ivoclean cleaning paste was effective in restoring µSBS to uncontaminated control group levels (p>0.05). SEM images showed a clean surface (ie, with no contaminant residues) after the cleaning methods, regardless of the organic contaminant type. All the assessed cleaning methods were effective in removing saliva from the silanized EMX surface; however, only Ivoclean was able to restore the adhesion quality when the silanized EMX surface was contaminated with human blood.


Sujet(s)
Collage dentaire , Céments résine , Céramiques/composition chimique , Collage dentaire/méthodes , Porcelaine dentaire/composition chimique , Analyse du stress dentaire , Humains , Acide fluorhydrique/composition chimique , Test de matériaux , Céments résine/composition chimique , Silanes , Propriétés de surface
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE