Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Int J Mol Sci ; 25(14)2024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-39062896

RÉSUMÉ

Aquaporins (AQPs), also known as water channels, appear to be particularly promising in maintaining male reproductive potential. Therefore, this study aimed to determine the presence of classical AQPs in the bovine (Bos taurus) reproductive system and analyze changes in their expression with age using immunohistochemistry and Western blotting. Of the six classical AQPs, AQP0, AQP1, AQP4, AQP5 and AQP6 were detected, while AQP2 was absent. In the testis, AQP0 was visible in Leydig cells in selected animals, while AQP1 was found in myoid cells surrounding the seminiferous tubules of mature individuals. This characteristic expression patterns of AQP0, limited only to certain bulls, is difficult to explain unequivocally. It is possible that AQP0 expression in cattle is subject to individual variability or changes in response to specific physiological conditions. In the caput and corpus epididymis, AQP0 showed weak expression in epithelial cells of immature animals and stronger expression in basal and principal cells of reproductive bulls. In all animals, AQP1 was present on the apical surface of epithelial cells in the initial segment of the caput epididymis. AQP4, AQP5 and AQP6 were identified in principal and basal cells along the entire epididymis of reproductive bulls. The abundance of AQP4 and AQP6 increased from the caput to the cauda epididymis with the growth and development of the animals. In all males, AQP4, AQP5 and AQP6 were observed in epithelial cells of the vas deferens, and their expression in this section increased with age. In conclusion, the abundance and distribution of the classical AQPs in various cell types and parts of the male reproductive system indicate their crucial role in maintaining water homeostasis, which is essential for normal reproductive function in cattle.


Sujet(s)
Aquaporines , Animaux , Mâle , Bovins , Aquaporines/métabolisme , Aquaporines/génétique , Épididyme/métabolisme , Système génital de l'homme/métabolisme , Testicule/métabolisme , Immunohistochimie
2.
Animals (Basel) ; 14(12)2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38929396

RÉSUMÉ

The purpose of this study was to analyze the ultrastructure of the testes of sexually immature calves and reproductive bulls of the Polish Holstein-Friesian Black-and-White breed. Utilizing TEM, this study identified three distinct stages of seminiferous tubule development in calves, characterized by varying shapes, distributions, and arrangements of individual cells. In immature animals, early developing spermatocytes, prespermatogonia, and pre-Sertoli cells were observed within the seminiferous tubules. In sexually mature bulls, all cells of the spermatogenic series were observed, situated on a thin, multilayered basal lamina, which forms characteristic undulations. An abundant smooth endoplasmic reticulum was observed in the cytoplasm of spermatogonia in both groups of animals, forming characteristic membranous swirls. In adult bulls, spermatogonia maintain contact with each other through numerous cytoplasmic bridges and cell connections, forming small spaces with visible microvilli between them. The ultrastructural analysis facilitated the identification of morphological changes occurring during the maturation of pre-Sertoli cells, transitioning from a large euchromatic nucleus to a nucleus in which the formation of characteristic vesicles and tubules could be observed. It should also be emphasized that two types of Sertoli cells, namely dark and light electron-dense cells, can be found in cattle. These cells differ from each other, indicating that they may perform different functions. The widespread recognition of the presence of two types of Sertoli cells in cattle will undoubtedly contribute to a better understanding of the processes occurring within the testes and provide a basis for further research in this area.

3.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article de Anglais | MEDLINE | ID: mdl-38338845

RÉSUMÉ

The increasing incidence of male infertility in humans and animals creates the need to search for new factors that significantly affect the course of reproductive processes. Therefore, the aim of this study was to determine the temporospatial expression of aquaglyceroporins (AQP3, AQP7 and AQP9) in the bovine (Bos taurus) reproductive system using immunohistochemistry and Western blotting. The study also included morphological analysis and identification of GATA-4. In brief, in immature individuals, AQP3 and AQP7 were found in gonocytes. In reproductive bulls, AQP3 was observed in spermatocytes and spermatogonia, while AQP7 was visible in all germ cells and the Sertoli cells. AQP7 and AQP9 were detected in the Leydig cells. Along the entire epididymis of reproductive bulls, aquaglyceroporins were visible, among others, in basal cells (AQP3 and AQP7), in epididymal sperm (AQP7) and in the stereocilia of the principal cells (AQP9). In males of all ages, aquaglyceroporins were identified in the principal and basal cells of the vas deferens. An increase in the expression of AQP3 in the testis and cauda epididymis and a decrease in the abundance of AQP7 in the vas deferens with age were found. In conclusion, age-related changes in the expression and/or distribution patterns of AQP3, AQP7 and AQP9 indicate the involvement of these proteins in the normal development and course of male reproductive processes in cattle.


Sujet(s)
Aquaglycéroporines , Aquaporines , Humains , Bovins , Mâle , Animaux , Aquaporine-3/génétique , Aquaporine-3/métabolisme , Aquaporines/métabolisme , Sperme/métabolisme , Épididyme/métabolisme , Aquaglycéroporines/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE