Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 88
Filtrer
1.
Nat Metab ; 6(6): 1108-1127, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38822028

RÉSUMÉ

Oxygen is critical for all metazoan organisms on the earth and impacts various biological processes in physiological and pathological conditions. While oxygen-sensing systems inducing acute hypoxic responses, including the hypoxia-inducible factor pathway, have been identified, those operating in prolonged hypoxia remain to be elucidated. Here we show that pyridoxine 5'-phosphate oxidase (PNPO), which catalyses bioactivation of vitamin B6, serves as an oxygen sensor and regulates lysosomal activity in macrophages. Decreased PNPO activity under prolonged hypoxia reduced an active form of vitamin B6, pyridoxal 5'-phosphate (PLP), and inhibited lysosomal acidification, which in macrophages led to iron dysregulation, TET2 protein loss and delayed resolution of the inflammatory response. Among PLP-dependent metabolism, supersulfide synthesis was suppressed in prolonged hypoxia, resulting in the lysosomal inhibition and consequent proinflammatory phenotypes of macrophages. The PNPO-PLP axis creates a distinct layer of oxygen sensing that gradually shuts down PLP-dependent metabolism in response to prolonged oxygen deprivation.


Sujet(s)
Lysosomes , Macrophages , Phosphate de pyridoxal , Lysosomes/métabolisme , Macrophages/métabolisme , Animaux , Souris , Phosphate de pyridoxal/métabolisme , Hypoxie/métabolisme , Hypoxie cellulaire , Vitamine B6/métabolisme , Oxygène/métabolisme , Inflammation/métabolisme
2.
iScience ; 27(3): 109121, 2024 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-38524370

RÉSUMÉ

Dysregulation of liver metabolism associated with obesity during feeding and fasting leads to the breakdown of metabolic homeostasis. However, the underlying mechanism remains unknown. Here, we measured multi-omics data in the liver of wild-type and leptin-deficient obese (ob/ob) mice at ad libitum feeding and constructed a differential regulatory trans-omic network of metabolic reactions. We compared the trans-omic network at feeding with that at 16 h fasting constructed in our previous study. Intermediate metabolites in glycolytic and nucleotide metabolism decreased in ob/ob mice at feeding but increased at fasting. Allosteric regulation reversely shifted between feeding and fasting, generally showing activation at feeding while inhibition at fasting in ob/ob mice. Transcriptional regulation was similar between feeding and fasting, generally showing inhibiting transcription factor regulations and activating enzyme protein regulations in ob/ob mice. The opposite metabolic dysregulation between feeding and fasting characterizes breakdown of metabolic homeostasis associated with obesity.

3.
Mass Spectrom (Tokyo) ; 13(1): A0143, 2024.
Article de Anglais | MEDLINE | ID: mdl-38410254

RÉSUMÉ

In metabolomic analysis, one of the most commonly used techniques to support the detection sensitivity and quantitation of mass spectrometry is combining it with liquid chromatography. Recently, we developed a method that enables comprehensive single-run measurement of hydrophilic metabolites using unified-hydrophilic interaction/anion exchange liquid chromatography/high-resolution mass spectrometry (unified-HILIC/AEX/HRMS) with a polymer-based mixed amines column (Gelpack GL-HilicAex). However, the importance of stationary phase functional groups and mobile phase conditions for the separation mechanisms and sensitive detection in unified-HILIC/AEX/HRMS is not yet fully understood. This study aimed to understand the importance of the mobile and stationary phases in unified-HILIC/AEX/HRMS. Two different alkali-resistant polymer-based amines-modified columns (Gelpack GL-HilicAex, primary, secondary, tertiary, and quaternary amine-modified polyglycerol dimethacrylate gel; Asahipak NH2P-50 2D, secondary amine-modified polyvinyl alcohol gel) and two eluents (acetonitrile and ammonium bicarbonate solution, pH 9.8) were used for comparative validation. A comparison of mobile phase conditions using both columns confirmed that the two-step separation from HILIC to AEX characteristic of unified-HILIC/AEX requires a linear gradient condition from acetonitrile to nearly 50% water and AEX with up to 40 mM bicarbonate ions. We found that when alkali-resistant hydrophilic polymer packing materials are modified with amines, unified-HILIC/AEX separation can be reproduced if at least one secondary amine associated with the amine series is present in the stationary phase. Furthermore, the difference in sensitivity in the HILIC and AEX modes owing to the different columns indicates the need for further improvements in the mobile phase composition and stationary phase.

4.
Anal Chem ; 96(3): 1275-1283, 2024 01 23.
Article de Anglais | MEDLINE | ID: mdl-38186224

RÉSUMÉ

The accuracy of the structural annotation of unidentified peaks obtained in metabolomic analysis using liquid chromatography/tandem mass spectrometry (LC/MS/MS) can be enhanced using retention time (RT) information as well as precursor and product ions. Unified-hydrophilic-interaction/anion-exchange liquid chromatography high-resolution tandem mass spectrometry (unified-HILIC/AEX/HRMS/MS) has been recently developed as an innovative method ideal for nontargeted polar metabolomics. However, the RT prediction for unified-HILIC/AEX has not been developed because of the complex separation mechanism characterized by the continuous transition of the separation modes from HILIC to AEX. In this study, we propose an RT prediction model of unified-HILIC/AEX/HRMS/MS, which enables the comprehensive structural annotation of polar metabolites. With training data for 203 polar metabolites, we ranked the feature importance using a random forest among 12,420 molecular descriptors (MDs) and constructed an RT prediction model with 26 selected MDs. The accuracy of the RT model was evaluated using test data for 51 polar metabolites, and 86.3% of the ΔRTs (difference between measured and predicted RTs) were within ±1.50 min, with a mean absolute error of 0.80 min, indicating high RT prediction accuracy. Nontargeted metabolomic data from the NIST SRM 1950-Metabolites in frozen human plasma were analyzed using the developed RT model and in silico MS/MS prediction, resulting in a successful structural estimation of 216 polar metabolites, in addition to the 62 identified based on standards. The proposed model can help accelerate the structural annotation of unknown hydrophilic metabolites, which is a key issue in metabolomic research.


Sujet(s)
Métabolome , Spectrométrie de masse en tandem , Humains , Spectrométrie de masse en tandem/méthodes , Chromatographie en phase liquide/méthodes , Métabolomique/méthodes , Anions , Interactions hydrophobes et hydrophiles
5.
Sci Immunol ; 9(91): eade6924, 2024 Jan 26.
Article de Anglais | MEDLINE | ID: mdl-38277465

RÉSUMÉ

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognize bacterial riboflavin-based metabolites as activating antigens. Although MAIT cells are found in tissues, it is unknown whether any host tissue-derived antigens exist. Here, we report that a sulfated bile acid, cholic acid 7-sulfate (CA7S), binds the nonclassical MHC class I protein MR1 and is recognized by MAIT cells. CA7S is a host-derived metabolite whose levels were reduced by more than 98% in germ-free mice. Deletion of the sulfotransferase 2a family of enzymes (Sult2a1-8) responsible for CA7S synthesis reduced the number of thymic MAIT cells in mice. Moreover, recognition of CA7S induced MAIT cell survival and the expression of a homeostatic gene signature. By contrast, recognition of a previously described foreign antigen, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), drove MAIT cell proliferation and the expression of inflammatory genes. Thus, CA7S is an endogenous antigen for MAIT cells, which promotes their development and function.


Sujet(s)
Cellules T invariantes associées aux muqueuses , Animaux , Souris , Acides et sels biliaires , Ligands , Sulfates , Antigènes mineurs d'histocompatibilité/métabolisme , Antigènes
6.
Anal Bioanal Chem ; 2023 Dec 23.
Article de Anglais | MEDLINE | ID: mdl-38135762

RÉSUMÉ

C-type lectin receptors (CLRs), which are pattern recognition receptors responsible for triggering innate immune responses, recognize damaged self-components and immunostimulatory lipids from pathogenic bacteria; however, several of their ligands remain unknown. Here, we propose a new analytical platform combining liquid chromatography-high-resolution tandem mass spectrometry with microfractionation capability (LC-FRC-HRMS/MS) and a reporter cell assay for sensitive activity measurements to develop an efficient methodology for searching for lipid ligands of CLR from microbial trace samples (crude cell extracts of approximately 5 mg dry cell/mL). We also developed an in-house lipidomic library containing accurate mass and fragmentation patterns of more than 10,000 lipid molecules predicted in silico for 90 lipid subclasses and 35 acyl side chain fatty acids. Using the developed LC-FRC-HRMS/MS system, the lipid extracts of Helicobacter pylori were separated and fractionated, and HRMS and HRMS/MS spectra were obtained simultaneously. The fractionated lipid extract samples in 96-well plates were thereafter subjected to reporter cell assays using nuclear factor of activated T cells (NFAT)-green fluorescent protein (GFP) reporter cells expressing mouse or human macrophage-inducible C-type lectin (Mincle). A total of 102 lipid molecules from all fractions were annotated using an in-house lipidomic library. Furthermore, a fraction that exhibited significant activity in the NFAT-GFP reporter cell assay contained α-cholesteryl glucoside, a type of glycolipid, which was successfully identified as a lipid ligand molecule for Mincle. Our analytical platform has the potential to be a useful tool for efficient discovery of lipid ligands for immunoreceptors.

7.
J Cachexia Sarcopenia Muscle ; 14(6): 2866-2881, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37941098

RÉSUMÉ

BACKGROUND: Diabetes is associated with an increased risk of deleterious changes in muscle mass and function or sarcopenia, leading to physical inactivity and worsening glycaemic control. Given the negative energy balance during sodium-glucose cotransporter-2 (SGLT2) inhibition, whether SGLT2 inhibitors affect skeletal muscle mass and function is a matter of concern. However, how SGLT2 inhibition affects the skeletal muscle function in patients with diabetes remains insufficiently explored. We aimed to explore the effects of canagliflozin (CANA), an SGLT2 inhibitor, on skeletal muscles in genetically diabetic db/db mice focusing on the differential responses of oxidative and glycolytic muscles. METHODS: Db/db mice were treated with CANA for 4 weeks. We measured running distance and handgrip strength to assess skeletal muscle function during CANA treatment. At the end of the experiment, we performed a targeted metabolome analysis of the skeletal muscles. RESULTS: CANA treatment improved the reduced endurance capacity, as revealed by running distance in db/db mice (414.9 ± 52.8 vs. 88.7 ± 22.7 m, P < 0.05). Targeted metabolome analysis revealed that 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranosyl 5'-monophosphate (AICARP), a naturally occurring AMP-activated protein kinase (AMPK) activator, increased in the oxidative soleus muscle (P < 0.05), but not in the glycolytic extensor digitorum longus muscle (P = 0.4376), with increased levels of AMPK phosphorylation (P < 0.01). CONCLUSIONS: This study highlights the potential role of the AICARP/AMPK pathway in oxidative rather than glycolytic skeletal muscles during SGLT2 inhibition, providing novel insights into the mechanism by which SGLT2 inhibitors improve endurance capacity in patients with type 2 diabetes.


Sujet(s)
Diabète expérimental , Diabète de type 2 , Inhibiteurs du cotransporteur sodium-glucose de type 2 , Animaux , Humains , Souris , AMP-Activated Protein Kinases/métabolisme , Diabète expérimental/traitement médicamenteux , Diabète expérimental/métabolisme , Diabète de type 2/complications , Diabète de type 2/traitement médicamenteux , Force de la main , Muscles squelettiques/métabolisme , Transporteur-2 sodium-glucose/métabolisme , Inhibiteurs du cotransporteur sodium-glucose de type 2/pharmacologie
8.
Sci Rep ; 13(1): 17396, 2023 10 13.
Article de Anglais | MEDLINE | ID: mdl-37833342

RÉSUMÉ

In the field of applied microbiology, reproducibility and experimental variability are important factors that influence both basic research as well as process development for industrial applications. Experimental reproducibility and accuracy depend not only on culture conditions such as temperature and aeration but also on raw materials and procedures used for media preparation. The M9 minimal medium is one of the most common synthetic media for culturing Escherichia coli and other bacteria. This synthetic medium can be used to observe and evaluate the physiological activity of microbes under minimal nutritional requirements and determine the limiting factor for the desired phenotype. Although one of the advantages using the M9 medium is that its composition can be modulated, it is difficult to control presence of trace components and impurities from the reagents for preparing this medium. Herein, we showed that trace ingredients present in the reagents used for M9 media preparation affect the bacterial physiological activities (e.g., cell growth, substrate consumption, and byproduct formation). Additionally, we systematically identified the trace ingredient that influenced phenotypic differences. Our results showed that the selection of reagents and accuracy during reagent preparation is important for experimental reproducibility in the field of bio-engineering and systems biology focused on the systematic and continuous development of biomolecular systems (e.g., biorefinery, metabolic engineering, and synthetic biology).


Sujet(s)
Escherichia coli , Phosphates , Escherichia coli/génétique , Reproductibilité des résultats , Milieux de culture/composition chimique
9.
Cell Rep ; 42(8): 112899, 2023 Aug 29.
Article de Anglais | MEDLINE | ID: mdl-37531252

RÉSUMÉ

Small cell lung cancer (SCLC) is one of the deadliest human cancers, with a 5-year survival rate of ∼7%. Here, we performed a targeted proteomics analysis of human SCLC samples and thereby identified hypoxanthine phosphoribosyltransferase 1 (HPRT1) in the salvage purine synthesis pathway as a factor that contributes to SCLC malignancy by promoting cell survival in a glutamine-starved environment. Inhibition of HPRT1 by 6-mercaptopurine (6-MP) in combination with methotrexate (MTX), which blocks the de novo purine synthesis pathway, attenuated the growth of SCLC in mouse xenograft models. Moreover, modulation of host glutamine anabolism with the glutamine synthetase inhibitor methionine sulfoximine (MSO) in combination with 6-MP and MTX treatment resulted in marked tumor suppression and prolongation of host survival. Our results thus suggest that modulation of host glutamine anabolism combined with simultaneous inhibition of the de novo and salvage purine synthesis pathways may be of therapeutic benefit for SCLC.

10.
J Am Chem Soc ; 145(33): 18538-18548, 2023 08 23.
Article de Anglais | MEDLINE | ID: mdl-37555666

RÉSUMÉ

Recently, various metabolites derived from host microbes have been reported to modulate the immune system, with potential involvement in health or diseases. Archaea, prokaryotic organisms, are present in the human body, but their connection with the host is largely unknown when compared to other microorganisms such as bacteria. This study focused on unique glycerolipids from symbiotic methanogenic archaea and evaluated their activities toward an innate immune receptor. The results revealed that archaeal lipids were recognized by the C-type lectin receptor Mincle and induced immune responses. A concurrent structure-activity relationship study identified the key structural features of archaeal lipids required for recognition by Mincle. Subsequent gene expression profiling suggested qualitative differences between the symbiotic archaeal lipid and the pathogenic bacteria-derived lipid. These findings have broad implications for understanding the function of symbiotic archaea in host health and diseases.


Sujet(s)
Archéobactéries , Lectines de type C , Humains , Archéobactéries/métabolisme , Lectines de type C/métabolisme , Récepteurs immunologiques/métabolisme , Relation structure-activité , Lipides
11.
Redox Biol ; 65: 102834, 2023 09.
Article de Anglais | MEDLINE | ID: mdl-37536084

RÉSUMÉ

The excessive inflammatory response of macrophages plays a vital role in the pathogenesis of various diseases. The dynamic metabolic alterations in macrophages, including amino acid metabolism, are known to orchestrate their inflammatory phenotype. To explore a new metabolic pathway that regulates the inflammatory response, we examined metabolome changes in mouse peritoneal macrophages (PMs) in response to lipopolysaccharide (LPS) and found a coordinated increase of cysteine and its related metabolites, suggesting an enhanced demand for cysteine during the inflammatory response. Because Slc7a11, which encodes a cystine transporter xCT, was remarkably upregulated upon the pro-inflammatory challenge and found to serve as a major channel of cysteine supply, we examined the inflammatory behavior of Slc7a11 knockout PMs (xCT-KO PMs) to clarify an impact of the increased cysteine demand on inflammation. The xCT-KO PMs exhibited a prolonged upregulation of pro-inflammatory genes, which was recapitulated by cystine depletion in the culture media of wild-type PMs, suggesting that cysteine facilitates the resolution of inflammation. Detailed analysis of the sulfur metabolome revealed that supersulfides, such as cysteine persulfide, were increased in PMs in response to LPS, which was abolished in xCT-KO PMs. Supplementation of N-acetylcysteine tetrasulfide (NAC-S2), a supersulfide donor, attenuated the pro-inflammatory gene expression in xCT-KO PMs. Thus, activated macrophages increase cystine uptake via xCT and produce supersulfides, creating a negative feedback loop to limit excessive inflammation. Our study highlights the finely tuned regulation of macrophage inflammatory response by sulfur metabolism.


Sujet(s)
Cystine , Lipopolysaccharides , Souris , Animaux , Rétroaction , Macrophages/métabolisme , Acétylcystéine , Soufre/métabolisme , Système y+ de transport d'acides aminés/génétique , Système y+ de transport d'acides aminés/métabolisme
12.
Biomedicines ; 11(4)2023 Apr 04.
Article de Anglais | MEDLINE | ID: mdl-37189713

RÉSUMÉ

Hereditary spastic paraplegia is a genetic neurological disorder characterized by spasticity of the lower limbs, and spastic paraplegia type 28 is one of its subtypes. Spastic paraplegia type 28 is a hereditary neurogenerative disorder with an autosomal recessive inheritance caused by loss of function of DDHD1. DDHD1 encodes phospholipase A1, which catalyzes phospholipids to lysophospholipids such as phosphatidic acids and phosphatidylinositols to lysophosphatidic acids and lysophoshatidylinositols. Quantitative changes in these phospholipids can be key to the pathogenesis of SPG28, even at subclinical levels. By lipidome analysis using plasma from mice, we globally examined phospholipids to identify molecules showing significant quantitative changes in Ddhd1 knockout mice. We then examined reproducibility of the quantitative changes in human sera including SPG28 patients. We identified nine kinds of phosphatidylinositols that show significant increases in Ddhd1 knockout mice. Of these, four kinds of phosphatidylinositols replicated the highest level in the SPG28 patient serum. All four kinds of phosphatidylinositols contained oleic acid. This observation suggests that the amount of oleic acid-containing PI was affected by loss of function of DDHD1. Our results also propose the possibility of using oleic acid-containing PI as a blood biomarker for SPG28.

13.
Cell Rep ; 42(5): 112530, 2023 05 30.
Article de Anglais | MEDLINE | ID: mdl-37209098

RÉSUMÉ

Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic disorder caused by overnutrition and can lead to nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). The transcription factor Forkhead box K1 (FOXK1) is implicated in regulation of lipid metabolism downstream of mechanistic target of rapamycin complex 1 (mTORC1), but its role in NAFLD-NASH pathogenesis is understudied. Here, we show that FOXK1 mediates nutrient-dependent suppression of lipid catabolism in the liver. Hepatocyte-specific deletion of Foxk1 in mice fed a NASH-inducing diet ameliorates not only hepatic steatosis but also associated inflammation, fibrosis, and tumorigenesis, resulting in improved survival. Genome-wide transcriptomic and chromatin immunoprecipitation analyses identify several lipid metabolism-related genes, including Ppara, as direct targets of FOXK1 in the liver. Our results suggest that FOXK1 plays a key role in the regulation of hepatic lipid metabolism and that its inhibition is a promising therapeutic strategy for NAFLD-NASH, as well as for HCC.


Sujet(s)
Carcinome hépatocellulaire , Tumeurs du foie , Stéatose hépatique non alcoolique , Animaux , Souris , Carcinome hépatocellulaire/métabolisme , Acides gras/métabolisme , Métabolisme lipidique , Foie/métabolisme , Tumeurs du foie/anatomopathologie , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Stéatose hépatique non alcoolique/métabolisme
14.
J Biochem ; 174(1): 89-98, 2023 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-37014628

RÉSUMÉ

Nicotinamide-N-methyltransferase (NNMT) is an enzyme that consumes S-adenosyl-methionine (SAM) and nicotinamide (NAM) to produce S-adenosyl-homocysteine (SAH) and 1-methylnicotinamide (MNAM). How much NNMT contributes to the quantity regulation of these four metabolites depends on whether NNMT is a major consumer or producer of these metabolites, which varies among various cellular contexts. Yet, whether NNMT critically regulates these metabolites in the AML12 hepatocyte cell line has been unexplored. To address this, we knockdown Nnmt in AML12 cells and investigate the effects of Nnmt RNAi on metabolism and gene expression. We find that Nnmt RNAi accumulates SAM and SAH, whereas it reduces MNAM with NAM being unaltered. These results indicate that NNMT is a significant consumer of SAM and critical for MNAM production in this cell line. Moreover, transcriptome analyses reveal that altered SAM and MNAM homeostasis is accompanied by various detrimental molecular phenotypes, as exemplified by the down-regulations of lipogenic genes, such as Srebf1. Consistent with this, oil-red O-staining experiments demonstrate the decrease of total neutral lipids upon Nnmt RNAi. Treating Nnmt RNAi AML12 cells with cycloleucine, an inhibitor of SAM biogenesis suppresses SAM accumulation and rescues the decrease of neutral lipids. MNAM also shows activity to elevate neutral lipids. These results suggest that NNMT contributes to lipid metabolism by maintaining proper SAM and MNAM homeostasis. This study provides an additional example where NNMT plays a critical role in regulating SAM and MNAM metabolism.


Sujet(s)
Métabolisme lipidique , Nicotinamide , Lignée cellulaire , Hépatocytes/métabolisme , Lipides , Methyltransferases/génétique , Methyltransferases/métabolisme , Nicotinamide/pharmacologie , Nicotinamide/métabolisme , Animaux , Souris
15.
Anal Chem ; 95(10): 4585-4591, 2023 03 14.
Article de Anglais | MEDLINE | ID: mdl-36847588

RÉSUMÉ

Free radical-mediated lipid peroxidation (LPO) induces the formation of numerous lipid radicals, which contribute to the development of several oxidative diseases. To understand the mechanism of LPO in biological systems and the significance of these radicals, identifying the structures of individual lipid radicals is imperative. In this study, we developed an analytical method based on liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) and a profluorescent nitroxide probe, N-(1-oxyl-2,2,6-trimethyl-6-pentylpiperidin-4-yl)-3-(5,5-difluoro-1,3-dimethyl-3H,5H-5l4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-7-yl)propanamide (BDP-Pen), for the detailed structural analysis of lipid radicals. The MS/MS spectra of BDP-Pen-lipid radical adducts showed product ions and thus allow the prediction of the lipid radical structures and individual detection of isomeric adducts. Using the developed technology, we separately detected the isomers of arachidonic acid (AA)-derived radicals generated in AA-treated HT1080 cells. This analytical system is a powerful tool for elucidating the mechanism of LPO in biological systems.


Sujet(s)
Spectrométrie de masse en tandem , Chromatographie en phase liquide , Radicaux libres/composition chimique , Peroxydation lipidique , Acide arachidonique
16.
Anal Chim Acta ; 1246: 340863, 2023 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-36764769

RÉSUMÉ

Supercritical fluid chromatography (SFC) is often coupled with electrospray ionization mass spectrometry (ESI-MS) for analyte detection because of its detection capability to a wide range of chemical properties. However, MS sensitivity is highly dependent on the chromatographic conditions, so that it is important to understand the ionization mechanism to determine the optimal chromatographic conditions. The ionization mechanism in SFC/ESI-MS is different to that of liquid chromatography because of the use of CO2 as a mobile phase. Some studies have suggested that alkoxycarbonic acids are formed in the mixture of CO2 and the alcohol modifier, and these species contribute to ionization in CO2-assisted SFC/ESI-MS. Therefore, in this study, we investigated CO2-assisted ESI to test this hypothesis, and we confirmed that methoxylcarbonic acid is generated in CO2/methanol mixtures and contributed to ion generation and detection because it acts as a proton donor in positive-ion mode. However, methoxylcarbonic acid interfered with ionization in negative-ion mode. Addition of ammonium acetate, which is often added to the modifier for negative ion detection in SFC/MS analysis, did not contribute to the recovery of MS sensitivity, although it tended to suppress the formation of metoxylcarbonic acid. This is likely due to ion suppression and neutralization of the negative sites of the analytes by anions or cations derived from ammonium acetate in the negative ion mode. Thus, additive-free methanol/CO2 was the most suitable mobile phase for obtaining high sensitivity in SFC/MS. To demonstrate the practicality of these findings, we tested our optimal mobile phase selection for pesticide analysis. In addition, we tested the addition of 0, 1, and 5 mM ammonium formate to the modifier and make-up solvent, and found that the addition of 1 mM ammonium formate gave the best results in pesticides analysis. In SFC/MS, salt is often added to improve separation or prevent desorption, but our findings suggest that the concentration of salt must be kept as low as possible to achieve highly sensitive MS detection. The results of this study reveal the best selection of the optimal conditions for the modifier and make-up solvent for CO2-assisted SFC/MS analysis and will be useful for the method development in SFC/MS.

17.
JCI Insight ; 8(4)2023 02 22.
Article de Anglais | MEDLINE | ID: mdl-36649084

RÉSUMÉ

Obesity is a major risk factor for end-stage kidney disease. We previously found that lysosomal dysfunction and impaired autophagic flux contribute to lipotoxicity in obesity-related kidney disease, in both humans and experimental animal models. However, the regulatory factors involved in countering renal lipotoxicity are largely unknown. Here, we found that palmitic acid strongly promoted dephosphorylation and nuclear translocation of transcription factor EB (TFEB) by inhibiting the mechanistic target of rapamycin kinase complex 1 pathway in a Rag GTPase-dependent manner, though these effects gradually diminished after extended treatment. We then investigated the role of TFEB in the pathogenesis of obesity-related kidney disease. Proximal tubular epithelial cell-specific (PTEC-specific) Tfeb-deficient mice fed a high-fat diet (HFD) exhibited greater phospholipid accumulation in enlarged lysosomes, which manifested as multilamellar bodies (MLBs). Activated TFEB mediated lysosomal exocytosis of phospholipids, which helped reduce MLB accumulation in PTECs. Furthermore, HFD-fed, PTEC-specific Tfeb-deficient mice showed autophagic stagnation and exacerbated injury upon renal ischemia/reperfusion. Finally, higher body mass index was associated with increased vacuolation and decreased nuclear TFEB in the proximal tubules of patients with chronic kidney disease. These results indicate a critical role of TFEB-mediated lysosomal exocytosis in counteracting renal lipotoxicity.


Sujet(s)
Alimentation riche en graisse , Exocytose , Lipides , Insuffisance rénale chronique , Animaux , Humains , Souris , Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines/métabolisme , Alimentation riche en graisse/effets indésirables , Exocytose/génétique , Rein/métabolisme , Rein/anatomopathologie , Lipides/toxicité , Lysosomes/métabolisme , Obésité/métabolisme , Insuffisance rénale chronique/métabolisme
18.
J Diabetes Investig ; 14(1): 102-110, 2023 Jan.
Article de Anglais | MEDLINE | ID: mdl-36208067

RÉSUMÉ

AIMS/INTRODUCTION: Hypertriglyceridemia is common in patients with diabetes. Although the fatty acid (FA) composition of triglycerides (TGs) is suggested to be related to the pathology of diabetes and its complications, changes in the fatty acid composition caused by diabetes treatment remain unclear. This study aimed to identify short-term changes in the fatty acid composition of plasma triglycerides after diabetes treatment. MATERIALS AND METHODS: This study was a sub-analysis of a prospective observational study of patients with type 2 diabetes aged between 20 and 75 years who were hospitalized to improve glycemic control (n = 31). A lipidomic analysis of plasma samples on the 2nd and 16th hospital days was conducted by supercritical fluid chromatography coupled with mass spectrometry. RESULTS: In total, 104 types of triglycerides with different compositions were identified. Most of them tended to decrease after treatment. In particular, triglycerides with a lower carbon number and fewer double bonds showed a relatively larger reduction. The inclusion of FA 14:0 (myristic acid), as a constituent of triglyceride, was significantly associated with a more than 50%, and statistically significant, reduction (odds ratio 39.0; P < 0.001). The total amount of FA 14:0 as a constituent of triglycerides also decreased significantly, and its rate of decrease was the greatest of all the fatty acid constituents. CONCLUSIONS: A 2 week comprehensive risk management for diabetes resulted in decreased levels of plasma triglycerides and a change in the fatty acid composition of triglycerides, characterized by a relatively large reduction in FA 14:0 as a constituent of triglycerides.


Sujet(s)
Chromatographie en phase supercritique , Diabète de type 2 , Humains , Jeune adulte , Adulte , Adulte d'âge moyen , Sujet âgé , Acides gras , Triglycéride , Diabète de type 2/complications , Diabète de type 2/traitement médicamenteux , Lipidomique , Spectrométrie de masse , Gestion du risque
19.
Tuberculosis (Edinb) ; 138: 102294, 2023 01.
Article de Anglais | MEDLINE | ID: mdl-36542980

RÉSUMÉ

Mycobacteria often cause chronic infection. To establish persistence in the host, mycobacteria need to evade host immune responses. However, the molecular mechanisms underlying the evasion strategy are not fully understood. Here, we demonstrate that mycobacterial cell wall lipids trigger an inhibitory receptor to suppress host immune responses. Mycolic acids are major cell wall components and are essential for survival of mycobacteria. By screening inhibitory receptors that react with mycobacterial lipids, we found that mycolic acids from various mycobacterial species bind to mouse Clec12A, and more potently to human Clec12A. Clec12A is a conserved inhibitory C-type lectin receptor containing immunoreceptor tyrosine-based inhibitory motif (ITIM). Innate immune responses, such as MCP-1 production, and PPD-specific recall T cell responses were augmented in Clec12A-deficient mice after infection. In contrast, human Clec12A transgenic mice were susceptible to infection with M. tuberculosis. These results suggest that mycobacteria dampen host immune responses by hijacking an inhibitory host receptor through their specific and essential lipids, mycolic acids. The blockade of this interaction might provide a therapeutic option for the treatment or prevention of mycobacterial infection.


Sujet(s)
Infections à Mycobacterium , Mycobacterium tuberculosis , Animaux , Humains , Souris , Paroi cellulaire/métabolisme , Immunité innée , Lectines de type C/génétique , Lectines de type C/métabolisme , Acides mycoliques/métabolisme , Récepteur mitogène/métabolisme
20.
iScience ; 25(12): 105612, 2022 Dec 22.
Article de Anglais | MEDLINE | ID: mdl-36465123

RÉSUMÉ

Dyslipidemia including the accumulation of cholesteryl esters (CEs) in the brain is associated with neurological disorders, although the underlying mechanism has been unclear. PDZD8, a Rab7 effector protein, transfers lipids between endoplasmic reticulum (ER) and Rab7-positive organelles and thereby promotes endolysosome maturation and contributes to the maintenance of neuronal integrity. Here we show that CEs accumulate in the brain of PDZD8-deficient mice as a result of impaired lipophagy. This CE accumulation was not affected by diet, implicating a defect in intracellular lipid metabolism. Whereas cholesterol synthesis appeared normal, degradation of lipid droplets (LDs) was defective, in the brain of PDZD8-deficient mice. PDZD8 may mediate the exchange of cholesterol and phosphatidylserine between ER and Rab7-positive organelles to promote the fusion of CE-containing LDs with lysosomes for their degradation. Our results thus suggest that PDZD8 promotes clearance of CEs from the brain by lipophagy, with this role of PDZD8 likely contributing to brain function.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...