Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
mBio ; 15(5): e0045524, 2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38526088

RÉSUMÉ

Climate change jeopardizes human health, global biodiversity, and sustainability of the biosphere. To make reliable predictions about climate change, scientists use Earth system models (ESMs) that integrate physical, chemical, and biological processes occurring on land, the oceans, and the atmosphere. Although critical for catalyzing coupled biogeochemical processes, microorganisms have traditionally been left out of ESMs. Here, we generate a "top 10" list of priorities, opportunities, and challenges for the explicit integration of microorganisms into ESMs. We discuss the need for coarse-graining microbial information into functionally relevant categories, as well as the capacity for microorganisms to rapidly evolve in response to climate-change drivers. Microbiologists are uniquely positioned to collect novel and valuable information necessary for next-generation ESMs, but this requires data harmonization and transdisciplinary collaboration to effectively guide adaptation strategies and mitigation policy.


Sujet(s)
Changement climatique , , Modèles théoriques , Bactéries/génétique , Biodiversité , Humains , Écosystème
2.
J Theor Biol ; 494: 110214, 2020 06 07.
Article de Anglais | MEDLINE | ID: mdl-32142805

RÉSUMÉ

Freshwater and marine algae can balance nutrient demand and availability by regulating uptake, accumulation and exudation. To obtain insight into these processes under nitrogen (N) and phosphorus (P) limitation, we reanalyze published data from continuous cultures of the chlorophyte Selenastrum minutum. Based on mass budgets, we argue that much of the non-limiting N and P had passed through the organisms and was present as dissolved organic phosphorus or nitrogen (DOP or DON). We construct a model that describes the production of biomass and dissolved organic matter (DOM) as a function of the growth rate. A fit of this model against the chemostat data suggests a high turnover of the non-limiting N and P: at the highest growth rates, N and P atoms spent on average only about 3 h inside an organism, before they were exuded as DON and DOP, respectively. This DOM exudation can explain the observed trends in the algal stoichiometric ratios as a function of the dilution rate. We discuss independent evidence from isotope experiments for this apparently wasteful behavior and we suggest experiments to quantify and characterize DON and DOP exudation further.


Sujet(s)
Chlorophyta , Modèles biologiques , Azote , Phosphore , Biomasse , Chlorophyta/métabolisme , Nutriments/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE