Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Nat Commun ; 12(1): 6132, 2021 10 21.
Article de Anglais | MEDLINE | ID: mdl-34675200

RÉSUMÉ

Studies of mechanical signalling are typically performed by comparing cells cultured on soft and stiff hydrogel-based substrates. However, it is challenging to independently and robustly control both substrate stiffness and extracellular matrix tethering to substrates, making matrix tethering a potentially confounding variable in mechanical signalling investigations. Moreover, unstable matrix tethering can lead to poor cell attachment and weak engagement of cell adhesions. To address this, we developed StemBond hydrogels, a hydrogel in which matrix tethering is robust and can be varied independently of stiffness. We validate StemBond hydrogels by showing that they provide an optimal system for culturing mouse and human pluripotent stem cells. We further show how soft StemBond hydrogels modulate stem cell function, partly through stiffness-sensitive ERK signalling. Our findings underline how substrate mechanics impact mechanosensitive signalling pathways regulating self-renewal and differentiation, indicating that optimising the complete mechanical microenvironment will offer greater control over stem cell fate specification.


Sujet(s)
Techniques de culture cellulaire/instrumentation , Matrice extracellulaire/composition chimique , Hydrogels/composition chimique , Cellules souches pluripotentes/cytologie , Animaux , Phénomènes biomécaniques , Adhérence cellulaire , Différenciation cellulaire , Cellules cultivées , Matrice extracellulaire/métabolisme , Humains , Mécanotransduction cellulaire , Souris , Cellules souches pluripotentes/composition chimique , Cellules souches pluripotentes/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE