Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Technol Health Care ; 2024 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-39093098

RÉSUMÉ

BACKGROUND: Rib fractures are one of the most common blunt injuries, accounting for approximately 10% of all trauma patients and 60% of thoracic injuries. Multiple rib fractures, especially flail chest, can cause local chest wall softening due to the loss of rib support, leading to paradoxical breathing, severe pain, and a high likelihood of accompanying lung contusions. OBJECTIVE: This study investigates the mechanical properties of a new polymer material rib internal fixator to provide theoretical data for its clinical use. METHODS: We conducted in vitro mechanical tests on 20 fresh caudal fin sheep ribs, using different fracture models across four randomly assigned groups (five ribs per group). The fixators were assessed using non-destructive three-point bending, torsion, and unilateral compression tests, with results averaged. Additionally, finite element analysis compared stress and strain in the polymer fixators and titanium alloy rib plates during bending and torsion tests. RESULTS: In vitro tests showed that the polymer fixators handled loads effectively up to a maximum without increase beyond a certain displacement. Bending and torsion tests via finite element analysis showed the polymer material sustained lower maximum equivalent stresses (84.455 MPa and 14.426 MPa) compared to titanium alloy plates (219.88 MPa and 46.47 MPa). CONCLUSION: The polymer rib fixator demonstrated sufficient strength for rib fracture fixation and was superior in stress management compared to titanium alloy plates in both bending and torsion tests, supporting its potential clinical application.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE