Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 180
Filtrer
1.
Int J Cardiol ; 414: 132417, 2024 Aug 03.
Article de Anglais | MEDLINE | ID: mdl-39098611

RÉSUMÉ

BACKGROUND: Immune thrombocytopenia (ITP) is a prevalent autoimmune bleeding disorder, with the primary objective of treatment being the prevention of bleeding. Clinical investigations have indicated that individuals with ITP face an elevated risk of thrombosis, and the occurrence of thromboembolic events in ITP patients can be attributed to a multitude of factors. However, establishing a definitive causal relationship between ITP and thrombosis remains challenging. METHODS: A two-sample Mendelian randomization (MR) study utilizing summary data from FinnGen consortium and UK Biobank was undertaken to investigate the causal association between ITP and thrombosis. The primary analysis employed the inverse-variance weighted (IVW) method, while supplementary analyses were conducted using the MR-Egger, weighted median, and MR-PRESSO approaches. RESULTS: Based on IVW method, there was a statistically significant but small positive correlation between ITP and thrombosis. Specifically, ITP patients exhibited a suggestive positive correlation with myocardial infarction and deep-vein thrombosis. However, our investigation did not identify any causal relationship between ITP and cerebral infarction, arterial embolism, other arterial embolisms, pulmonary embolism, thrombophlebitis, or portal vein thrombosis. Sensitivity analyses further confirmed the accuracy and robustness of these findings. CONCLUSIONS: This study presents empirical support for the causal relationship between ITP and thrombosis. It is important to note that a diminished platelet count does not serve as a preventive measure against thrombus formation. Consequently, when managing a newly diagnosed ITP patient, clinicians need to be aware that there is a slight elevation in the risk of thrombosis during treatment.

2.
Molecules ; 29(14)2024 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-39064890

RÉSUMÉ

The key factors in achieving high energy efficiency for proton exchange membrane fuel cells are reducing overpotential and increasing the oxygen reduction rate. Based on first-principles calculations, we induce H atom adsorption on 4 × 4 × 1 monolayer MoSe2 to induce spin polarization, thereby improving the catalytic performance. In the calculation of supercells, the band unfolding method is used to address the band folding effect in doped systems. Furthermore, it is evident from analyzing the unique energy band configuration of MoSe2 that a higher valley splitting value has better catalytic effects on the oxygen reduction reaction. We believe that the symmetries of the distinct adsorption site result in different overpotentials. In addition, when an even number of hydrogen atoms is adsorbed, the monolayer MoSe2 has no spin polarization. The spin can affect the electron transfer process and alter the hybrid energy with the reaction products, thereby regulating its catalytic performance.

3.
Biomater Adv ; 163: 213962, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39032435

RÉSUMÉ

Solid tumors create a hypoxic microenvironment and this character can be utilized for cancer therapy, but the hypoxia levels are insufficient to achieve satisfactory therapeutic benefits. Some tactics have been used to improve hypoxia, which however will cause side effects due to the uncontrolled drug release. We herein report near-infrared (NIR) photoactivatable three-in-one nanoagents (PCT) to aggravate tumor hypoxia and enable amplified photo-combinational chemotherapy. PCT are formed based on a thermal-responsive liposome nanoparticle containing three therapeutic agents: a hypoxia responsive prodrug tirapazamine (TPZ) for chemotherapy, a vascular targeting agent combretastatin A-4 (CA4) for vascular disturbance and a semiconducting polymer for both photodynamic therapy (PDT) and photothermal therapy (PTT). With NIR laser irradiation, PCT generate heat for PTT and destructing thermal-responsive liposomes to achieve activatable releases of TPZ and CA4. Moreover, PCT produce singlet oxygen (1O2) for PDT via consuming tumor oxygen. CA4 can disturb the blood vessels in tumor microenvironment to aggravate the hypoxic microenvironment, which results in the activation of TPZ for amplified chemotherapy. PCT thus enable PTT, PDT and hypoxia-amplified chemotherapy to afford a high therapeutic efficacy to almost absolutely eradicate subcutaneous 4 T1 tumors and effectively inhibit tumor metastases in lung and liver. This work presents an activatable three-in-one therapeutic nanoplatform with remotely controllable and efficient therapeutic actions to treat cancer.


Sujet(s)
Rayons infrarouges , Liposomes , Nanoparticules , Photothérapie dynamique , Tirapazamine , Animaux , Humains , Photothérapie dynamique/méthodes , Tirapazamine/pharmacologie , Tirapazamine/composition chimique , Tirapazamine/usage thérapeutique , Nanoparticules/composition chimique , Nanoparticules/usage thérapeutique , Souris , Microenvironnement tumoral/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Thérapie photothermique/méthodes , Stilbènes/pharmacologie , Stilbènes/usage thérapeutique , Stilbènes/composition chimique , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Antinéoplasiques/usage thérapeutique , Promédicaments/pharmacologie , Promédicaments/composition chimique , Promédicaments/usage thérapeutique , Photosensibilisants/usage thérapeutique , Photosensibilisants/pharmacologie , Photosensibilisants/composition chimique , Hypoxie tumorale/effets des médicaments et des substances chimiques
4.
Biomol Biomed ; 2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38850114

RÉSUMÉ

Invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) account for most cases of breast cancer. However, there is ongoing debate about any potential variations in overall survival (OS) between ILC and IDC. This study aimed to compare survival between IDC and ILC, identify prognostic factors for ILC patients, and construct a nomogram for predicting OS rates. This retrospective cohort analysis utilized data from the Surveillance, Epidemiology, and End Results (SEER) Cancer Database. Patients diagnosed with ILC and IDC between 2000 and 2019 were enrolled. To minimize baseline differences in clinicopathological characteristics and survival outcomes, a propensity score matching (PSM) method was used. Data from the multivariate Cox regression analyses were used to construct a predictive nomogram for OS at 1, 3, and 5 years, incorporating all independent prognostic factors. Following the PSM procedure, patients with ILC exhibited a better prognosis compared to those with IDC. TNM stage, age >70, radiotherapy, surgery, estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HR-/HER2+) subtype were identified as independent factors for OS in ILC patients. Surgery and radiotherapy effectively reduced the risk of death, while chemotherapy did not demonstrate the same benefit. This model could support clinicians in evaluating the prognosis of ILC for decision-making and patient counseling.

5.
Cell Genom ; 4(6): 100559, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38740021

RÉSUMÉ

The gut microbiome displays genetic differences among populations, and characterization of the genomic landscape of the gut microbiome in China remains limited. Here, we present the Chinese Gut Microbial Reference (CGMR) set, comprising 101,060 high-quality metagenomic assembled genomes (MAGs) of 3,707 nonredundant species from 3,234 fecal samples across primarily rural Chinese locations, 1,376 live isolates mainly from lactic acid bacteria, and 987 novel species relative to worldwide databases. We observed region-specific coexisting MAGs and MAGs with probiotic and cardiometabolic functionalities. Preliminary mouse experiments suggest a probiotic effect of two Faecalibacillus intestinalis isolates in alleviating constipation, cardiometabolic influences of three Bacteroides fragilis_A isolates in obesity, and isolates from the genera Parabacteroides and Lactobacillus in host lipid metabolism. Our study expands the current microbial genomes with paired isolates and demonstrates potential host effects, contributing to the mechanistic understanding of host-microbe interactions.


Sujet(s)
Microbiome gastro-intestinal , Probiotiques , Microbiome gastro-intestinal/génétique , Chine , Animaux , Humains , Souris , Mâle , Femelle , Génome bactérien/génétique , Génome microbien , Fèces/microbiologie , Obésité/microbiologie , Adulte , Souris de lignée C57BL
6.
Int Immunopharmacol ; 134: 112205, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38718659

RÉSUMÉ

Current methods for delivering genes to target tumors face significant challenges, including off-target effects and immune responses against delivery vectors. In this study, we developed a novel approach using messenger RNA (mRNA) to encode IL11RA for local immunotherapy, aiming to harness the immune system to combat tumors. Our research uncovered a compelling correlation between IL11RA expression and CD8 + T cell levels across multiple tumor types, with elevated IL11RA expression correlating with improved overall survival. Examination of the Pan-Cancer Atlas dataset showed a significant reduction in IL11RA expression in various cancer types compared to normal tissue, raising questions about its potential role in tumorigenesis. To achieve efficient in vivo expression of IL11RA, we synthesized two mRNA sequences mimicking the wild-type protein. These mRNA sequences were formulated and capped to ensure effective delivery, resulting in robust expression within tumor sites. Our investigation into IL11RA mRNA therapy demonstrated its effectiveness in controlling tumor growth when administered both intratumorally and intravenously in mouse models. Additionally, IL11RA mRNA treatment significantly stimulated the expansion of CD8 + T cells within tumors, draining lymph nodes, and the spleen. Transcriptome analysis revealed distinct transcriptional patterns associated with T cell functions. Using multiple deconvolution algorithms, we found substantial infiltration of CD8 + T cells following IL11RA mRNA treatment, highlighting its immunomodulatory effects within the tumor microenvironment. In conclusion, IL11RA mRNA therapy presents a promising strategy for tumor regression with potential immunomodulatory effects and clinical implications for improved survival outcomes.


Sujet(s)
Lymphocytes T CD8+ , Immunothérapie , ARN messager , Animaux , ARN messager/génétique , ARN messager/métabolisme , Immunothérapie/méthodes , Lymphocytes T CD8+/immunologie , Humains , Souris , Souris de lignée C57BL , Lignée cellulaire tumorale , Femelle , Sous-unité alpha du récepteur à l'interleukine-11/génétique , Tumeurs/thérapie , Tumeurs/immunologie , Tumeurs/génétique , Microenvironnement tumoral/immunologie , Régulation de l'expression des gènes tumoraux
7.
Cell Prolif ; 57(7): e13619, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38444279

RÉSUMÉ

YT521-B homology (YTH) domain family (YTHDF) proteins serve as readers that directly recognise m6A modifications. In this study, we aim to probe the role of YTHDF1 in environmental carcinogen-induced malignant transformation of gastric cells and gastric cancer (GC) carcinogenesis. We established a long-term low-dose MNU-induced malignant transformation model in gastric epithelial cells. In vivo and in vitro experiments were conducted to validate the malignant phenotype and characterise the roles of YTHDF1 and its downstream genes in malignant transformation cells. Additionally, we explored downstream m6A modification targets of YTHDF1 using RNA-sequencing, RNA immunoprecipitation, and proteomics analyses, and conducted validation experiments in cell experiments and clinical samples. Long-term low-dose exposure of MNU converted normal Gges-1 cells into malignant cells. YTHDF1 mRNA and protein expression are increased in MNU-induced malignant cells (p<0.001). Meanwhile, YTHDF1 knockdown inhibits the malignant potential of MNU-treated cells (p<0.01). YTHDF1 knockdown specifically suppresses HSPH1 protein, but not RNA levels. RIP-qPCR validates HSPH1 is the target of YTHDF1 (p<0.01). HSPH1 knockdown impairs the malignant potential of MNU-induced transformed cells. The increased expression of the key regulatory factor YTHDF1 in MNU-induced gastric carcinogenesis affects malignant transformation and tumorigenesis by regulating the translation of downstream HSPH1. These findings provide new potential targets for preventing and treating environmental chemical-induced gastric carcinogenesis.


Sujet(s)
1-Méthyl-1-nitroso-urée , Protéines de liaison à l'ARN , Tumeurs de l'estomac , Tumeurs de l'estomac/anatomopathologie , Tumeurs de l'estomac/induit chimiquement , Tumeurs de l'estomac/métabolisme , Tumeurs de l'estomac/génétique , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Humains , Animaux , 1-Méthyl-1-nitroso-urée/toxicité , Souris , Carcinogenèse/induit chimiquement , Carcinogenèse/métabolisme , Carcinogenèse/anatomopathologie , Carcinogenèse/génétique , Transformation cellulaire néoplasique/induit chimiquement , Transformation cellulaire néoplasique/métabolisme , Transformation cellulaire néoplasique/génétique , Lignée cellulaire tumorale , Régulation de l'expression des gènes tumoraux/effets des médicaments et des substances chimiques , Biosynthèse des protéines/effets des médicaments et des substances chimiques , Mâle
8.
J Cell Mol Med ; 28(6): e18175, 2024 03.
Article de Anglais | MEDLINE | ID: mdl-38451044

RÉSUMÉ

The study aimed to identify the biomarkers for predicting coronary atherosclerotic lesions progression in patients with inflammatory bowel disease (IBD). Related transcriptome datasets were seized from Gene Expression Omnibus database. IBD-related modules were identified via Weighted Gene Co-expression Network Analysis. The 'Limma' was applied to screen differentially expressed genes between stable coronary artery disease (CAD) and acute myocardial infarction (AMI). Subsequently, we employed protein-protein interaction (PPI) network and three machine-learning strategies to further screen for candidate hub genes. Application of the receiver operating characteristics curve to quantitatively evaluate candidates to determine key diagnostic biomarkers, followed by a nomogram construction. Ultimately, we performed immune landscape analysis, single-gene GSEA and prediction of target-drugs. 3227 IBD-related module genes and 570 DEGs accounting for AMI were recognized. Intersection yielded 85 shared genes and mostly enriched in immune and inflammatory pathways. After filtering through PPI network and multi-machine learning algorithms, five candidate genes generated. Upon validation, CTSD, CEBPD, CYP27A1 were identified as key diagnostic biomarkers with a superior sensitivity and specificity (AUC > 0.8). Furthermore, all three genes were negatively correlated with CD4+ T cells and positively correlated with neutrophils. Single-gene GSEA highlighted the importance of pathogen invasion, metabolism, immune and inflammation responses during the pathogenesis of AMI. Ten target-drugs were predicted. The discovery of three peripheral blood biomarkers capable of predicting the risk of CAD proceeding into AMI in IBD patients. These identified biomarkers were negatively correlated with CD4+ T cells and positively correlated with neutrophils, indicating a latent therapeutic target.


Sujet(s)
Maladie des artères coronaires , Maladies inflammatoires intestinales , Infarctus du myocarde , Humains , Maladie des artères coronaires/génétique , Marqueurs biologiques , Biologie informatique , Maladies inflammatoires intestinales/génétique , Apprentissage machine
9.
Molecules ; 29(5)2024 Mar 05.
Article de Anglais | MEDLINE | ID: mdl-38474660

RÉSUMÉ

In this study, novel amphiphilic polymer emulsifiers for avermectin (Avm) were synthesized facilely via the hydrolysis of ethylene-maleic anhydride copolymer (EMA) with different agents, and their structures were confirmed by various techniques. Then, water-based Avm-nanoemulsions were fabricated with the emulsifiers via phase inversion emulsification process, and superior emulsifier was selected via the emulsification effects. Using the superior emulsifier, an optimal Avm-nanoemulsion (defined as Avm@HEMA) with satisfying particle size of 156.8 ± 4.9 nm, encapsulation efficiency (EE) of 69.72 ± 4.01% and drug loading capacity (DLC) of 54.93 ± 1.12% was constructed based on response surface methodology (RSM). Owing to the emulsifier, the Avm@HEMA showed a series of advantages, including high stability, ultraviolet resistance, low surface tension, good spreading and high affinity to different leaves. Additionally, compared to pure Avm and Avm-emulsifiable concentrate (Avm-EC), Avm@HEMA displayed a controlled releasing feature. The encapsulated Avm was released quite slowly at normal conditions (pH 7.0, 25 °C or 15 °C) but could be released at an accelerated rate in weak acid (pH 5.5) or weak alkali (pH 8.5) media or at high temperature (40 °C). The drug releasing profiles of Avm@HEMA fit the Korsmeyer-Peppas model quite well at pH 7.0 and 25 °C (controlled by Fickian diffusion) and at pH 7.0 and 10 °C (controlled by non-Fickian diffusion), while it fits the logistic model under other conditions (pH 5.5 and 25 °C, pH 8.5 and 25 °C, pH 7.0 and 40 °C).

10.
ISME J ; 18(1)2024 Jan 08.
Article de Anglais | MEDLINE | ID: mdl-38365257

RÉSUMÉ

The colonization of microbes in the gut is key to establishing a healthy host-microbiome symbiosis for newborns. We longitudinally profiled the gut microbiome in a model consisting of 36 neonatal oxen from birth up to 2 months postpartum and carried out microbial transplantation to reshape their gut microbiome. Genomic reconstruction of deeply sequenced fecal samples resulted in a total of 3931 metagenomic-assembled genomes from 472 representative species, of which 184 were identified as new species when compared with existing databases of oxen. Single nucleotide level metagenomic profiling shows a rapid influx of microbes after birth, followed by dynamic shifts during the first few weeks of life. Microbial transplantation was found to reshape the genetic makeup of 33 metagenomic-assembled genomes (FDR < 0.05), mainly from Prevotella and Bacteroides species. We further linked over 20 million microbial single nucleotide variations to 736 plasma metabolites, which enabled us to characterize 24 study-wide significant associations (P < 4.4 × 10-9) that identify the potential microbial genetic regulation of host immune and neuro-related metabolites, including glutathione and L-dopa. Our integration analyses further revealed that microbial genetic variations may influence the health status and growth performance by modulating metabolites via structural regulation of their encoded proteins. For instance, we found that the albumin levels and total antioxidant capacity were correlated with L-dopa, which was determined by single nucleotide variations via structural regulations of metabolic enzymes. The current results indicate that temporal colonization and transplantation-driven strain replacement are crucial for newborn gut development, offering insights for enhancing newborn health and growth.


Sujet(s)
Microbiome gastro-intestinal , Microbiote , Nouveau-né , Humains , Femelle , Microbiome gastro-intestinal/physiologie , Nucléotides , Lévodopa , Fèces , Métagénomique/méthodes
11.
Ann Vasc Surg ; 102: 92-100, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38301851

RÉSUMÉ

BACKGROUND: To quantitatively analyze histological and fiber structure of the superior mesenteric artery (SMA) wall and to further explore the possible relationship between the architecture and histology changes of vessel wall and the occurrence of related diseases. METHODS: Histological and fiber structure analysis were performed on SMA specimens obtained from 22 cadavers. The SMA specimens were divided into initial, curved, and distal segments, and each segment was separated into the anterior and posterior walls. RESULTS: From the initial to the curved to the distal segment, the ratio of elastin decreased (31.4% ± 6.0%, 21.1% ± 5.8%, 18.6% ± 4.7%, respectively; P < 0.001), whereas the ratio of smooth muscle actin (24.5% ± 8.7%, 30.5% ± 6.8%, 36.1% ± 7.3%, respectively; P < 0.001) increased. Elastic fiber longitudinal amplitude of angular undulation was highest in the initial segment [7° (3.25°, 15°)] and lowest in the curved segment [2° (1°, 5°)]. In SMA curved segment, the anterior wall, when compared with the posterior wall, demonstrated a lower ratio of elastin (19.0% ± 5.8% vs. 23.3% ± 5.0%; P = 0.010) and collagen (41.4% ± 12.3% vs. 49.0% ± 10.2%; P = 0.032), a lower elastic fiber longitudinal amplitude of angular undulation [1° (1°, 5°) vs. 3° (2°, 5.25°); P = 0.013], a lower average fiber diameter (8.06 ± 0.36 pixels vs. 8.45 ± 0.50 pixels; P = 0.005), and a lower average segment length (17.96 ± 1.59 pixels vs. 20.05 ± 2.33 pixels; P = 0.001). CONCLUSIONS: SMA wall structure varies along the circumferential and axial directions, the presence of dense undulated elastic fiber protects the SMA initial segment of from dissection and aneurysm, but highly cross-linked collagen fiber here increases the likelihood of plaque formation. In the anterior wall of the curved segment, lower elastin and collagen content, lower elastic fiber undulation, and higher degree of collagen fiber cross-linking leads to the occurrence of SMA dissection and aneurysm. In the distal segment, high levels of vascular smooth muscle cells and bundles of long collagen fiber offer protection against the development of SMA-related diseases.


Sujet(s)
Anévrysme , Artère mésentérique supérieure , Humains , Artère mésentérique supérieure/imagerie diagnostique , Résultat thérapeutique , Élastine , Collagène
13.
Crit Rev Anal Chem ; : 1-17, 2024 Jan 17.
Article de Anglais | MEDLINE | ID: mdl-38234139

RÉSUMÉ

Per- and polyfluoroalkyl substances (PFASs) have emerged as a prominent environmental pollutant in recent years, primarily due to their tendency to accumulate and magnify in both the environment and living organisms. The entry of PFASs into the environment can have detrimental effects on human health. Hence, it is crucial to actively monitor and detect the presence of PFASs. The current standard detection method of PFAS is the combination of chromatography and mass spectrometry. However, this requires expensive instruments, extra sample pretreatment steps, complicated operation and long analysis time. As a result, new methods that do not rely on chromatography and mass spectrometry have been developed and applied. These alternative methods mainly include optical and electrochemical sensor methods, which offer great potential in terms of real-time field detection, instrument miniaturization, shorter analysis time, and reduced detection cost. This review provides a summary of recent advancements in PFAS detection sensors. We categorize and explain the principles and mechanisms of these sensors, and compare their limits of detection and sensitivity. Finally, we discuss the future challenges and improvements needed for PFAS sensors, such as field application, commercialization, and other related issues.

14.
Transl Oncol ; 41: 101858, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38242006

RÉSUMÉ

ALKBH5 plays critical roles in various cellular processes via post-transcriptional regulation of oncogenes or tumor suppressors in an N6-methyladenosine (m6A)-dependent manner. However, its function in intrahepatic cholangiocarcinoma (ICC) remains unclear. In the present study, bioinformatic analyses of The Cancer Genome Atlas (TCGA) data were performed, and the association of ALKBH5 in predicting overall survival in patients with ICC was investigated. Then, the clinical data of patients from The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University (Changzhou, China) was used to reveal the overall survival of patients with ICC with different ALKBH5 expression levels by Kaplan-Meier survival analysis. Subsequently, in vitro and in vivo studies were conducted to explore and verify the downstream genes regulated by ALKBH5. The results from TCGA data demonstrated that ALKBH5 expression is elevated in ICC and that patients with high ALKBH5 expression exhibited poor survival compared with patients with low expression. In addition, in vitro assays demonstrated that ALKBH5 promoted cell viability and maintained the stemness of ICC cells, leading to ICC progression. The present study also demonstrated that BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) is the downstream gene regulated by ALKBH5 and targeting BUB1B suppressed cell growth. The in vitro and vivo experiments revealed that ALKBH5 might function through BUB1B to maintain the stemness of ICC and that altering BUB1B may suppress ICC progression.

16.
J Ethnopharmacol ; 323: 117673, 2024 Apr 06.
Article de Anglais | MEDLINE | ID: mdl-38158096

RÉSUMÉ

ETHNOPHARMACOLOGICAL RELEVANCE: Tribuloside, a natural flavonoid extracted from Chinese medicine Tribulus terrestris L., has shown potent efficacy in treating various diseases. In China, the fruits of Tribulus terrestris L. have long been utilized for relieving headache, dizziness, itchiness, and vitiligo. Water-based extract derived from Tribulus terrestris L. can enhance melanogenesis in mouse hair follicle melanocytes by elevating the expression of α-melanocyte stimulating hormone (α-MSH) and melanocortin-1 recepter (MC-1R). Nevertheless, there is a lack of information regarding the impact of tribuloside on pigmentation in both laboratory settings and living organisms. AIM OF THE STUDY: The present research aimed to examine the impact of tribuloside on pigmentation, and delve into the underlying mechanism. MATERIALS AND METHODS: Following the administration of tribuloside in human epidermal melanocytes (HEMCs), we utilized microplate reader, Masson-Fontana ammoniacal silver stain, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to measure melanin contents, dendrite lengths, melanosome counts; L-DOPA oxidation assay to indicate tyrosinase activity, Western blotting to evaluate the expression of melanogenic and associated phosphodiesterase (PDE)/cyclic adenosine monophosphate (cAMP)/cyclic-AMP dependent protein kinase A (PKA) pathway proteins. A PDE-Glo assay to verify the inhibitory effect of tribuloside on PDE was also conducted. Additionally, we examined the impact of tribuloside on the pigmentation in both zebrafish model and human skin samples. RESULTS: Tribuloside had a notable impact on the production of melanin in melanocytes, zebrafish, and human skin samples. These functions might be attributed to the inhibitory effect of tribuloside on PDE, which could increase the intracellular level of cAMP to stimulate the phosphorylation of cAMP-response element binding (CREB). Once activated, it induced microphthalmia-associated transcription factor (MITF) expression and increased the expression of tyrosinase, Rab27a and cell division cycle protein 42 (Cdc42), ultimately facilitating melanogenesis, melanocyte dendricity, and melanin transport. CONCLUSION: Tribuloside acts on the PDE/cAMP/PKA pathway to enhance melanogenesis, melanocyte dendricity, and melanosome transport; meanwhile, tribuloside does not have any toxic effects on cells and may be introduced into clinical prescriptions to promote pigmentation.


Sujet(s)
Mélanines , Mélanosomes , Animaux , Souris , Humains , Mélanines/métabolisme , Mélanosomes/métabolisme , Danio zébré , Monophenol monooxygenase/métabolisme , , Phosphodiesterases/métabolisme , Phosphodiesterases/pharmacologie , Cyclic AMP-Dependent Protein Kinases/métabolisme , Mélanocytes , AMP cyclique/métabolisme , Facteur de transcription associé à la microphtalmie/métabolisme , Lignée cellulaire tumorale
17.
Diabetol Metab Syndr ; 15(1): 254, 2023 Dec 06.
Article de Anglais | MEDLINE | ID: mdl-38057836

RÉSUMÉ

OBJECTIVE: To evaluate subclinical LV systolic dysfunction in obese patients by global myocardial work (MW). METHODS: A total of 589 obese patients and 100 normal controls were enrolled in the study. The global longitudinal strain (GLS), global work index (GWI), global constructive work (GCW), global wasted work (GWW) and global work efficiency (GWE) were generated by a noninvasive pressure-strain loop (PSL) in apical 3-, 4- and 2-chamber views acquired by two-dimensional echocardiography. All obese patients were divided into three groups: class I obesity (mild) 30-35 kg/m2, class II obesity (moderate) 35-40 kg/m2 and class III obesity (severe) > 40 kg/m2. These values were compared among the three groups. The independent influencing factors of subclinical LV systolic dysfunction in obese patients were explored by constructing a multiple regression model. ROC analysis was performed to determine the performance of MW to detect subclinical LV systolic dysfunction in obese patients. RESULTS: The absolute value of GLS in obese patients was significantly lower than that in normal controls (P < 0.001). The values of GWI, GCW, GWE and GCW/GWW in obese patients were significantly lower than those in normal controls (P < 0.05), while GWW was significantly larger than that in normal controls (P < 0.001). Subgroup analysis and trend analysis showed that the values of GWI, GCW, GWE and GCW/GWW in severe obese patients were lower than those in moderate obese patients and lower than those in mild obese patients (P < 0.01), while GWW in severe obese patients was larger than that in moderate obese patients and larger than that in mild obese patients (P < 0.05). Female sex, BMI and SBP were independent influencing factors of impaired GWI (ß = 0.15, P < 0.001) (ß=-0.18, P < 0.001) (ß = 0.50, P < 0.001) and GCW (ß = 0.17, P < 0.001) (ß=-0.19, P < 0.001) (ß = 0.57, P < 0.001). ROC analysis showed that the AUC of the combined global MW was significantly higher than the AUCs of the individual indices (P < 0.05). CONCLUSION: In this study, we conclude that subclinical LV systolic dysfunction was detected by the novel global MW technique in obese patients. Elevated BMI in obese patients results in an increased risk of subclinical LV systolic dysfunction, although the LVEF is normal. Controlling BMI in obese patients may reduce the impairment to the LV myocardial systolic function. Global MW is a novel and reproducible technique that can be well applied in the clinical evaluation of subclinical LV systolic dysfunction.

19.
Toxics ; 11(10)2023 Oct 07.
Article de Anglais | MEDLINE | ID: mdl-37888693

RÉSUMÉ

Early-life exposure to environmental neurotoxicants is known to have lasting effects on organisms. In this study, we aim to investigate the impacts of PQ exposure during early developmental stages and adult re-challenge in aged mice on non-motor neurobehavior. Two mouse models, which were exposed once during early life stage and re-exposure at adulthood, were created to explore the long-term effects of PQ on non-motor neurobehavior. As the results showed, early-life exposure to PQ caused impairment in working memory and cognitive ability in aged male mice, but not in female mice, exhibiting a sex-specific impairment. Moreover, male mice that were re-challenged with PQ at adulthood following early-life exposure also exhibited non-motor neurobehavioral disorders. Notably, re-exposure to PQ exacerbated neurobehavioral disorders and anxiety levels compared to single exposure during different life stages. Collectively, early-life exposure to PQ can result in irreversible impairments in non-motor neurobehavior and increase susceptibility to subsequent insults in male mice, but not in female mice, suggesting greater sensitivity in male rodents to PQ-induced non-motor neurobehavioral deficits.

20.
Adv Sci (Weinh) ; 10(35): e2303975, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37875398

RÉSUMÉ

Lung cancer is the leading cause of death among all cancers. A persistent chronic inflammatory microenvironment is highly correlated with lung cancer. However, there are no anti-inflammatory agents effective against lung cancer. Cytochrome P450 2E1 (CYP2E1) plays an important role in the inflammatory response. Here, it is found that CYP2E1 is significantly higher in the peritumoral tissue of non-small cell lung cancer (NSCLC) patients and lung tumor growth is significantly impeded in Cyp2e1-/- mice. The novel CYP2E1 inhibitor Q11, 1-(4-methyl-5-thialzolyl) ethenone, is effective in the treatment of lung cancer in mice, which can inhibit cancer cells by changing macrophage polarization rather than directly act on the cancer cells. It is also clarify that the benefit of Q11 may associated with the IL-6/STAT3 and MAPK/ERK pathways. The data demonstrate that CYP2E1 may be a novel inflammatory target and that Q11 is effective on lung cancer by regulation of the inflammatory microenvironment. These findings provide a molecular basis for targeting CYP2E1 and illustrate the potential druggability of the CYP2E1 inhibitor Q11.


Sujet(s)
Carcinome pulmonaire non à petites cellules , Tumeurs du poumon , Animaux , Humains , Souris , Carcinome pulmonaire non à petites cellules/traitement médicamenteux , Carcinome pulmonaire non à petites cellules/enzymologie , Cytochrome P-450 CYP2E1/métabolisme , Inflammation/traitement médicamenteux , Tumeurs du poumon/traitement médicamenteux , Système de signalisation des MAP kinases , Microenvironnement tumoral
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE