Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 406
Filtrer
1.
Mol Neurobiol ; 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38954251

RÉSUMÉ

Hippocampal plasticity is closely related to physiological brain functions such as learning and memory. However, the effect of toll-like receptor 4 (TLR4) activation on hippocampal plasticity after neonatal hypoxic-ischaemic brain damage (HIBD) remains unclear. In our study, seven-day-old rat pups were randomly categorised into three groups: control, hypoxic-ischemia (HI), and HI + TAK-242 (TAK-242). The pups were ligated in the left common carotid artery and then subjected to hypoxia to establish the neonatal HIBD model.The expression of the TLR4 in the left hippocampus of the HI group was increased compared to the control group, while TAK-242 reduced the expression level at 3 days after HIBD. Additionally, TAK-242 reversed the increased Zea-Longa score, increased the left/right hippocampal weight ratio, and increased the number of Nissl-positive neurons in the hippocampal CA1 region compared to HI group at 3 days after HIBD. Pre-injection of TAK-242 alleviated the decrease in PSD95, Aggrecan and NR1, BDNF, CREB, and pCREB expression in the hippocampus at 24 h after HIBD. It also alleviated the decrease in PSD95, BDNF, and NR2A/NR1 expression in the hippocampus at 7 days after HIBD. Furthermore, Pre-injection of TAK-242 alleviated the decrease in NR2A/NR1 expression at 21 days after HIBD. Finally,TAK-242 increased the percentage of third-grade dendritic mushroom spines processes in the basal and apical segments of neurons in the hippocampal CA1 region at 21 days after HIBD.Therefore, we conclude that preinhibition of TLR4 prior to neonatal HIBD improved the plasticity of the hippocampus.

2.
Regen Ther ; 26: 213-218, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38962491

RÉSUMÉ

Background: Ozone can enhance the expression of some growth factors (GFs) in platelet rich plasma (PRP), recent study showed oxygen-rich PRP (ozonized PRP) have better therapeutic effects on bone and joint diseases. PRP injection has been widely used in the treatment of facial rejuvenation, but the efficacy of sufficient oxygen-rich PRP in facial rejuvenation has not been studied. Objective: Firstly, we examined whether ozone treatment can increase the concentration of GFs of PRP in vitro. And then a variety of subjective and objective detection methods were used to evaluate the effect of sufficient(10-12 mL each time for the injection of face and neck) oxygen-rich (ozonized PRP) PRP injection in facial rejuvenation by follow-up for 6 months. At last, we investigated the satisfaction, side effects and pain score of the treatment through a questionnaire survey. Methods: The concentration of main GFs in PRP treated with different dose of ozone in vitro was measured by ELISA. Clinical picture, the collagen thickness of dermis by reflectance confocal microscope(RCM), skin conditions (including spots, ultraviolet (UV) spots, brown spots, red area, pores, wrinkles, texture and porphyrin) by VISIA were collected before treatment and each month follow-up visit after treatment until 6-month follow-up period was finished. Patients' satisfaction, side effects and pain score were collected at the end of follow-up period. Results: PRP treated by high-dose ozone (57 µg/mL, ozone/PRP volume ratio:1/1) in vitro showed a significant increase in endothelial growth factor (EGF) and transforming growth factor-ß (TGF-ß) compared to baseline(P < 0.05). Collagen thickness of forehead, cheek and neck improved significantly compare to the baseline until to the 6 months after treatment. Spots, UV spots, brown spots, red area and texture improved significantly compare to the baseline(P < 0.05). All of participants reported improvement and have a median pain score of 4.19. No serious adverse events were observed. Conclusions: Ozone treatment can increase the concentration of GFs such as EGF and TGF-ß in PRP in vitro. Sufficient oxygen-rich PRP injection may be an effective and promising method to treat facial rejuvenation.

3.
Int J Cardiol Heart Vasc ; 53: 101434, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38974459

RÉSUMÉ

Coronary heart disease (CHD) is a serious cardiovascular illness, for which an elevated uric acid (UA) level presents as a considerable risk factor. This can be treated with UA-lowering drugs such as allopurinol and benzbromarone, which can reduce UA levels by the inhibition of UA production or by promoting its excretion. Such drugs can also be beneficial to CHD in other ways, such as reducing the degree of coronary arteriosclerosis, improving myocardial blood supply and alleviating ventricular remodeling. Different UA-lowering drugs are used in different ways: allopurinol is preferred as a single agent in clinical application, but in absence of the desired response, a combination of drugs such as benzbromarone with ACE inhibitors may be used. Patients must be monitored regularly to adjust the medication regimen. Appropriate use of UA-lowering drugs has great significance for the prevention and treatment of CHD. However, the specific mechanisms of the drugs and individualized drug use need further research. This review article expounds the mechanisms of UA-lowering drugs on CHD and their clinical application strategy, thereby providing a reference for further optimization of treatment.

4.
Clin Exp Dermatol ; 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38953173

RÉSUMÉ

BACKGROUND: Confocal laser scanning microscopy (CLSM) is noninvasive technique utilized for identification and analysis skin malignancies. Several studies have applied CLSM in monitoring the therapeutic effects of basal cell carcinoma (BCC). OBJECTIVE: To investigate the diagnostic value of CLSM in low-risk BCC and the evaluation of photodynamic therapy (PDT). METHODS: We have diagnosed 149 patients with BCC using CLSM and histopathological examination. Based on histopathology, we summarized the classification information of low-risk BCC along with imaging features observed through CLSM. Thirty-four low-risk BCC patients underwent PDT treatment, and we used CLSM to evaluate its efficacy. RESULTS: Out of 149 participants were diagnosed with BCC by CLSM, 52 were pigmented type, 87 were nodular type and 10 were superficial type. After histopathological examination, 44 out of 52 were pigmented type, five were nodular type and three were superficial type. The results of CLSM were consistent with those of 87 nodular type and 10 superficial type. The CLSM features of nodular were observed in the tissue fissures around the tumor, the pigment mass was the CLSM characteristic of pigmented type. The simultaneous occurrence of inflammation and increased vasculature were characteristics of superficial. The effective rate of PDT was 100%, and the cure rate was 67.6%. At 12 months follow up, the recurrence rate of PDT was 11.8%, 15.0% for nodule type, 10.0% for pigmented type and 0% for superficial type. CONCLUSION: The tissue classification of CLSM for low-risk BCC was consistent with histopathology. CLSM can be used to monitor the efficacy of PDT for low-risk BCC.

5.
Phys Chem Chem Phys ; 26(25): 17549-17560, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38884195

RÉSUMÉ

In this paper, we combine an energy decomposition analysis (EDA) scheme with many-body expansion (MBE) to develop a MB-EDA method to study the cooperative and anti-cooperative effects in molecular cluster systems. Based on the target state optimization self-consistent field (TSO-SCF) method, the intermolecular interaction energy can be decomposed into five chemically meaningful terms, i.e., electrostatic, exchange, polarization, charge transfer and dispersion interaction energies. MB-EDA can decompose each of these terms in MBE. This MB-EDA has been applied to 3 different cluster systems: water clusters, ionic liquid clusters, and acetonitrile-methane clusters. This reveals that electrostatic, exchange, and dispersion interactions are highly pairwise additive in all systems. In water and ionic liquid clusters, the many-body effects are significant in both polarization and charge transfer interactions, but are cooperative and anti-cooperative, respectively. For acetonitrile-methane clusters, which do not involve hydrogen bonds or charge-charge Coulombic interactions, the many-body effects are quite small. The chemical origins of different many-body effects are deeply analyzed. The MB-EDA method has been implemented in Qbics (https://qbics.info) and can be a useful tool for understanding the many-body behavior in molecular aggregates at the quantum chemical level of theory.

6.
Angew Chem Int Ed Engl ; : e202407355, 2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38837587

RÉSUMÉ

The structure of molecular aggregates is crucial for charge transport and photovoltaic performance in organic solar cells (OSCs). Herein, the intermolecular interactions and aggregated structures of nonfused-ring electron acceptors (NFREAs) are precisely regulated through a halogen transposition strategy, resulting in a noteworthy transformation from a 2D-layered structure to a 3D-interconnected packing network. Based on the 3D electron transport pathway, the binary and ternary devices deliver outstanding power conversion efficiencies (PCEs) of 17.46% and 18.24%, respectively, marking the highest value for NFREA-based OSCs.

7.
Clin Oral Investig ; 28(7): 360, 2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38847917

RÉSUMÉ

OBJECTIVES: Lung cancer (LC) is the malignant tumor with the highest mortality rate worldwide, and precise early diagnosis can improve patient prognosis. The purpose of this study was to investigate whether alterations in the glycopatterns recognized by the Hippeastrum hybrid lectin (HHL) in salivary proteins are associated with the development of LC. MATERIALS AND METHODS: First, we collected saliva samples from LC (15 lung adenocarcinoma (ADC); 15 squamous cell carcinoma (SCC); 15 small cell lung cancer (SCLC)) and 15 benign pulmonary disease (BPD) for high-throughput detection of abundance levels of HHL-recognized glycopatterns using protein microarrays, and then validated the pooled samples from each group with lectin blotting analysis. Finally, the N-glycan profiles of salivary glycoproteins isolated from the pooled samples using HHL-magnetic particle conjugates were characterized separately using MALDI-TOF/TOF-MS. RESULTS: The results showed that the abundance level of glycopatterns recognized by HHL in salivary proteins was elevated in LC compared to BPD. The proportion of mannosylated N-glycans was notably higher in ADC (31.7%), SCC (39.0%), and SCLC (46.6%) compared to BPD (23.3%). CONCLUSIONS: The altered salivary glycopatterns such as oligomannose, Manα1-3Man, or Manα1-6Man N-glycans recognized by HHL might serve as potential biomarkers for the diagnosis of LC patients. CLINICAL RELEVANCE: This study provides crucial information for studying changes in salivary to differentiate between BPD and LC and facilitate the discovery of biomarkers for LC diagnosis based on precise alterations of mannosylated N-glycans in saliva.


Sujet(s)
Tumeurs du poumon , Salive , Humains , Mâle , Salive/composition chimique , Femelle , Adulte d'âge moyen , Sujet âgé , Analyse par réseau de protéines , Polyosides , Spectrométrie de masse MALDI , Glycoprotéines , Marqueurs biologiques tumoraux , Protéines et peptides salivaires/métabolisme , Mannose , Lectines végétales/composition chimique , Carcinome épidermoïde
8.
Mult Scler Relat Disord ; 88: 105700, 2024 Jun 03.
Article de Anglais | MEDLINE | ID: mdl-38880027

RÉSUMÉ

BACKGROUND: Observational studies have reported that COVID-19 is associated with alterations in retinal layer thickness, including changes in the ganglion cell inner plexiform layer (GCIPL) and retinal nerve fiber layer (RNFL). However, the causal relationships remain unknown. Therefore, we assessed the direction and strength of the causal relationship between COVID-19 and GCIPL and RNFL thicknesses using a bidirectional two-sample Mendelian randomization (MR) design. METHODS: Data were obtained from a large-scale COVID-19 Host Genetics Initiative (Nsample = 6,512,887), GCIPL dataset (Ncase = 31,434), and RNFL dataset (Ncase = 31,434). The inverse-variance weighted (IVW) method is the primary approach used to estimate causal effects. MR Egger, weighted median, weighted mode, MR Egger (bootstrap), and penalized weighted median methods were applied. Sensitivity analyses were implemented with RadialMR, MRPRESSO, MR-Egger regression, Cochran's Q statistic, leave-one-out analysis, and the funnel plot. RESULTS: Forward MR analysis revealed that genetically identified COVID-19 susceptibility significantly increased the risk of GCIPL thickness (OR = 2.428, 95 % confidence interval [CI]:1.493-3.947, PIVW = 3.579 × 10-4) and RNFL thickness (OR = 1.735, 95 % CI:1.198-2.513, PIVW = 3.580 × 10-3) after Bonferroni correction. Reverse MR analysis did not indicate a significant causal association between GCIPL and RNFL thicknesses and COVID-19 phenotypes. No significant horizontal pleiotropy was found in the sensitivity analysis. CONCLUSIONS: The host genetic liability to COVID-19 susceptibility was causally associated with increased GCIPL and RNFL thicknesses. Documenting this association increases our understanding of the pathophysiological mechanisms underlying COVID -19 susceptibility in retinopathy.

9.
Polymers (Basel) ; 16(11)2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38891516

RÉSUMÉ

Poly(dimethylsiloxane) (PDMS) coatings are considered to be environmentally friendly antifouling coatings. However, the presence of hydrophobic surfaces can enhance the adhesion rate of proteins, bacteria and microalgae, posing a challenge for biofouling removal. In this study, hydrophilic polymer chains were synthesised from methyl methacrylate (MMA), Poly(ethylene glycol) methyl ether methacrylate (PEG-MA) and 3-(trimethoxysilyl) propyl methacrylate (TPMA). The crosslinking reaction between TPMA and PDMS results in the formation of a silicone-based amphiphilic co-network with surface reconstruction properties. The hydrophilic and hydrophobic domains are covalently bonded by condensation reactions, while the hydrophilic polymers migrate under water to induce surface reconstruction and form hydrogen bonds with water molecules to form a dense hydrated layer. This design effectively mitigates the adhesion of proteins, bacteria, algae and other marine organisms to the coating. The antifouling performance of the coatings was evaluated by assessing their adhesion rates to proteins (BSA-FITC), bacteria (B. subtilis and P. ruthenica) and algae (P. tricornutum). The results show that the amphiphilic co-network coating (e.g., P-AM-15) exhibits excellent antifouling properties against protein, bacterial and microalgal fouling. Furthermore, an overall assessment of its antifouling performance and stability was conducted in the East China Sea from 16 May to 12 September 2023, which showed that this silicon-based amphiphilic co-network coating remained intact with almost no marine organisms adhering to it. This study provides a novel approach for the development of high-performance silicone-based antifouling coatings.

10.
J Inflamm Res ; 17: 3433-3448, 2024.
Article de Anglais | MEDLINE | ID: mdl-38828054

RÉSUMÉ

As one of the most prevalent chronic inflammatory skin diseases, atopic dermatitis (AD) increasingly affects the aging population. Amid the ongoing global aging trend, it's essential to recognize the intricate relationship between AD and aging. This paper reviews existing knowledge, summarizing clinical observations of associations between AD and aging-related diseases in various systems, including endocrine, cardiovascular, and neurological. Additionally, it discusses major theories explaining the correlation, encompassing skin-mucosal barriers, systemic inflammation and stress, genes, signal transduction, and environmental and behavioral factors. The association between AD and aging holds significant importance, both in population and basic perspectives. While further research is warranted, this paper aims to inspire deeper exploration of inflammation/allergy-aging dynamics and the timely management of elderly patients with AD.

11.
Eur J Dermatol ; 34(2): 158-162, 2024 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-38907546

RÉSUMÉ

For herpes zoster (HZ) infection, early diagnosis and treatment are important in order to shorten the course of the disease and reduce sequelae, however, there is a lack of non-invasive diagnostic methods. Reflectance confocal microscopy (RCM) is a non-invasive technique often used to diagnose dyspigmented dermatosis, skin tumours, human papillomavirus infectious dermatosis, etc. To evaluate the clinical value of RCM for the early diagnosis of HZ. We collected RCM images from 30 HZ patients with typical vesicles in order to analyse their features. We then utilized RCM to analyse early lesions of another 12 HZ patients, who presented with localized erythema or papules, but not typical vesicles. In addition, we recruited one patient with HZ and observed the lesions over 14 days also using RCM. RCM images showed that the typical lesions of HZ mainly involved oedema of the spinous layer, intraepidermal blister formation, ballooning multinucleated giant (BMG) cells, and dermal papillary oedema. Among them, BMG cells were of specific diagnostic value. Early lesions of HZ patients without typical vesicles showed BMG cells under RCM. A few BMG cells were observed during the early stage of HZ. However, the number of BMG cells increased significantly as typical clustered blisters gradually appeared in the lesions. With the regression of the lesions, the number of BMG cells decreased gradually. RCM, with the advantages of being non-invasive, rapid, and convenient, has an important role in monitoring the evolution of HZ.


Sujet(s)
Diagnostic précoce , Zona , Microscopie confocale , Humains , Microscopie confocale/méthodes , Zona/anatomopathologie , Zona/diagnostic , Femelle , Mâle , Adulte d'âge moyen , Sujet âgé , Adulte , Cellules géantes/anatomopathologie , Cloque/imagerie diagnostique , Cloque/anatomopathologie , Cloque/virologie , Oedème/imagerie diagnostique , Oedème/anatomopathologie , Sujet âgé de 80 ans ou plus
12.
ISA Trans ; 150: 44-55, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38797648

RÉSUMÉ

The paper concentrates on the issue of distributed disturbance observer-based nonfragile bipartite consensus within nonlinear delayed multiagent systems, encompassing both leaderless and leader-following structures. The delays under consideration are nonuniform, manifesting in the state, the nonlinearity, and the communication processes. To suppress the external disturbances and the observer gain perturbations, distributed nonfragile disturbance observers pertaining to relative output and communication delays are developed to estimate the external disturbances for each agent. Employing the developed disturbance observer, distributed control protocols for nonfragile bipartite consensus are constructed incorporating states, estimated disturbances, and communication delays. These protocols can ensure bipartite consensus, compensate for external disturbances, and tolerate uncertainties in control gain. New augmented Lyapunov-Krasovskii functions are formulated by introducing the triple integral term and the augmented vector. The new bipartite consensus criteria for the studied multiagent systems are established with less conservatism by employing the techniques on second-order Bessel-Legendre integral inequality, reciprocally convex combination, and free weight matrix. Finally, numerical simulations and comparisons are performed for both leaderless and leader-following scenarios, thereby validating and enhancing the theoretical outcomes.

13.
Nat Commun ; 15(1): 2953, 2024 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-38580662

RÉSUMÉ

Heart failure with preserved ejection fraction (HFpEF) is associated with endothelial dysfunction. We have previously reported that statins prevent endothelial dysfunction through inhibition of microRNA-133a (miR-133a). This study is to investigate the effects and the underlying mechanisms of statins on HFpEF. Here, we show that statins upregulate the expression of a circular RNA (circRNA-RBCK1) which is co-transcripted with the ring-B-box-coiled-coil protein interacting with protein kinase C-1 (RBCK1) gene. Simultaneously, statins increase activator protein 2 alpha (AP-2α) transcriptional activity and the interaction between circRNA-RBCK1 and miR-133a. Furthermore, AP-2α directly interacts with RBCK1 gene promoter in endothelial cells. In vivo, lovastatin improves diastolic function in male mice under HFpEF, which is abolished by loss function of endothelial AP-2α or circRNA-RBCK1. This study suggests that statins upregulate the AP-2α/circRNA-RBCK1 signaling to suppress miR-133a in cardiac endothelial cells and prevent diastolic dysfunction in HFpEF.


Sujet(s)
Défaillance cardiaque , Inhibiteurs de l'hydroxyméthylglutaryl-CoA réductase , microARN , Animaux , Mâle , Souris , Cellules endothéliales/métabolisme , Défaillance cardiaque/traitement médicamenteux , Défaillance cardiaque/génétique , Défaillance cardiaque/métabolisme , Inhibiteurs de l'hydroxyméthylglutaryl-CoA réductase/pharmacologie , microARN/métabolisme , ARN circulaire/génétique , Débit systolique/physiologie
14.
Langmuir ; 40(15): 8170-8179, 2024 Apr 16.
Article de Anglais | MEDLINE | ID: mdl-38581390

RÉSUMÉ

The performances of flexible piezoresistive sensors based on polymer nanocomposites are significantly affected by the environmental temperature; therefore, comprehensively investigating the temperature-dependent electromechanical response behaviors of conductive polymer nanocomposites is crucial for developing high-precision flexible piezoresistive sensors in a wide-temperature range. Herein, carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composites widely used for flexible piezoresistive sensors were prepared, and then the temperature-dependent electrical, mechanical, and electromechanical properties of the optimized CNT/PDMS composite in the temperature range from -150 to 150 °C were systematically investigated. At a low temperature of -150 °C, the CNT/PDMS composite becomes brittle with a compressive modulus of ∼1.2 MPa and loses its elasticity and reversible sensing capability. At a high temperature (above 90 °C), the CNT/PDMS composite softens, shows a fluid-like mechanical property, and loses its reversible sensing capability. In the temperature range from -60 to 90 °C, the CNT/PDMS composite exhibits good elasticity and reversible sensing behaviors and its modulus, resistivity, and sensing sensitivity decrease with an increasing temperature. At room temperature (30 °C), the CNT/PDMS composite exhibits better mechanical and piezoresistive stability than those at low and high temperatures. Given that environmental temperature changes have significant effects on the sensing performances of conductive polymer composites, the effect of ambient temperature changes must be considered when flexible piezoresistive sensors are designed and fabricated.

15.
World J Clin Cases ; 12(12): 2122-2127, 2024 Apr 26.
Article de Anglais | MEDLINE | ID: mdl-38680266

RÉSUMÉ

BACKGROUND: Crossed renal ectopia (CRE) occurs when one kidney crosses the midline from the primary side to the contralateral side while the ureter remains on the primary side. Rectal cancer, one of the most common malignant tumors of the digestive tract, refers to cancer from the dentate line to the rectosigmoid junction. The concurrent presentation of CRE alongside rectal cancer is an uncommon clinical observation. CASE SUMMARY: Herein, we report a 69-year-old male patient with rectal cancer who was diagnosed with CRE via computed tomography during hospitalization. Following thorough preoperative evaluations, the patient underwent Dixon surgery. CONCLUSION: We performed laparoscopic radical resection of rectal cancer and adequate lymph node removal in a patient with CRE with no postoperative discomfort.

16.
Front Bioeng Biotechnol ; 12: 1376455, 2024.
Article de Anglais | MEDLINE | ID: mdl-38655385

RÉSUMÉ

Extracellular vesicles (EVs), these minute yet mighty cellular messengers are redefining our understanding of a spectrum of diseases, from cancer to cardiovascular ailments, neurodegenerative disorders, and even infectious diseases like HIV. Central to cellular communication, EVs emerge as both potent facilitators and insightful biomarkers in immune response and the trajectory of disease progression. This review ventures deep into the realm of EVs in HIV-unraveling their pivotal roles in diagnosis, disease mechanism unravelling, and therapeutic innovation. With a focus on HIV, we will highlights the transformative potential of EVs in both diagnosing and treating this formidable virus. Unveiling the intricate dance between EVs and HIV, the review aims to shed light on novel therapeutic strategies that could significantly benefit HIV therapy, potentially even leading to the eradication of HIV.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124267, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38643560

RÉSUMÉ

To safeguard the environment, it is crucial to monitor the emissions of nitrogen oxide (NO) and sulfur dioxide (SO2), harmful pollutants generated during fossil fuel combustion in industries. However, accurately measuring ultra-low concentrations of SO2 and NO remains a challenge. In this study, we developed an optical measurement system based on ultraviolet differential optical absorption spectroscopy (UV-DOAS) to address this issue. The 200-230 nm cross-sensitivity band was chosen for SO2 and NO. Experimental data with a mixed gas concentration range of 1-25 ppm for SO2 and NO was utilized. We proposed a fast algorithm based on Bi-directional Long Short-Term Memory (Bi-LSTM) to extract the differential optical density, overcoming the mutual interference between SO2 and NO. A nonlinear calibration model was employed to invert the separated differential absorption spectra and determine the gas concentrations. The results demonstrated a detection limit (DL) of 0.27 ppm and a full-scale error of 3.15 % for SO2, while for NO, the DL was 0.32 ppm and the full-scale error was 2.81 %. The uncertainties in SO2 and NO detection were calculated as 1.73 % and 1.96 %, respectively.

19.
Adv Mater ; 36(25): e2400451, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38529563

RÉSUMÉ

Wettability significantly influences various surface interactions and applications at the liquid-solid interface. However, the understanding is complicated by the intricate charge exchange occurring through contact electrification (CE) during this process. The understanding of the influence of triboelectric charge on wettability remains challenging, especially due to the complexities involved in concurrently measuring contact angles and interfacial electrical signals. Here, the relationship is investigated between surface charge density and change of contact angle of dielectric films after contact with water droplets. It is observed that the charge exchange when water spared lead to a spontaneous wetting phenomenon, which is termed as the contact electrification induced wetting (CEW). Notably, these results demonstrate a linear dependence between the change of contact angle (CA) of the materials and the density of surface charge on the solid surface. Continuous CEW tests show that not only the static CA but also the dynamics of wetting are influenced by the accumulation charges at the interface. The mechanism behind CEW involves the redistribution of surface charges on a solid surface and polar water molecules within liquid. This interaction results in a decrease in interface energy, leading to a reduction in the CA. Ab initio calculations suggest that the reduction in interface energy may stem from the enhanced surface charge on the substrate, which strengthens the hydrogen bond interaction between water and the substrate. These findings have the potential to advance the understanding of CE and wetting phenomena, with applications in energy harvesting, catalysis, and droplet manipulation at liquid-solid interfaces.

20.
Natl Sci Rev ; 11(4): nwae044, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38440214

RÉSUMÉ

There is still an urgent need to develop hydrogels with intelligent antibacterial ability to achieve on-demand treatment of infected wounds and accelerate wound healing by improving the regeneration microenvironment. We proposed a strategy of hydrogel wound dressing with bacteria-responsive self-activating antibacterial property and multiple nanozyme activities to remodel the regeneration microenvironment in order to significantly promote infected wound healing. Specifically, pH-responsive H2O2 self-supplying composite nanozyme (MSCO) and pH/enzyme-sensitive bacteria-responsive triblock micelles encapsulated with lactate oxidase (PPEL) were prepared and encapsulated in hydrogels composed of L-arginine-modified chitosan (CA) and phenylboronic acid-modified oxidized dextran (ODP) to form a cascade bacteria-responsive self-activating antibacterial composite hydrogel platform. The hydrogels respond to multifactorial changes of the bacterial metabolic microenvironment to achieve on-demand antibacterial and biofilm eradication through transformation of bacterial metabolites, and chemodynamic therapy enhanced by nanozyme activity in conjunction with self-driven nitric oxide (NO) release. The composite hydrogel showed 'self-diagnostic' treatment for changes in the wound microenvironment. Through self-activating antibacterial therapy in the infection stage to self-adaptive oxidative stress relief and angiogenesis in the post-infection stage, it promotes wound closure, accelerates wound collagen deposition and angiogenesis, and completely improves the microenvironment of infected wound regeneration, which provides a new method for the design of intelligent wound dressings.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...