Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Adv Sci (Weinh) ; 11(30): e2403059, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38840438

RÉSUMÉ

Plants have evolved diverse defense mechanisms encompassing physical and chemical barriers. Cotton pigment glands are known for containing various defense metabolites, but the precise regulation of gland size to modulate defense compound levels remains enigmatic. Here, it is discovered that the VQ domain-containing protein JAVL negatively regulates pigment gland size and the biosynthesis of defense compounds, while the MYC2-like transcription factor GoPGF has the opposite effect. Notably, GoPGF directly activates the expression of JAVL, whereas JAVL suppresses GoPGF transcription, establishing a negative feedback loop that maintains the expression homeostasis between GoPGF and JAVL. Furthermore, it is observed that JAVL negatively regulates jasmonate levels by inhibiting the expression of jasmonate biosynthetic genes and interacting with GoPGF to attenuate its activation effects, thereby maintaining homeostatic regulation of jasmonate levels. The increased expression ratio of GoPGF to JAVL leads to enlarged pigment glands and elevated jasmonates and defense compounds, enhancing insect and pathogen resistance in cotton. These findings unveil a new mechanism for regulating gland size and secondary metabolites biosynthesis, providing innovative strategies for strengthening plant defense.


Sujet(s)
Cyclopentanes , Régulation de l'expression des gènes végétaux , Gossypium , Oxylipines , , Sesquiterpènes , Gossypium/génétique , Gossypium/métabolisme , Oxylipines/métabolisme , Cyclopentanes/métabolisme , Sesquiterpènes/métabolisme , Rétrocontrôle physiologique , Protéines végétales/métabolisme , Protéines végétales/génétique , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique
2.
Plant Biotechnol J ; 21(6): 1191-1205, 2023 06.
Article de Anglais | MEDLINE | ID: mdl-36786225

RÉSUMÉ

In contrast to CUT&Tag approaches for profiling bulk histone modifications, current CUT&Tag methods for analysing specific transcription factor (TF)-DNA interactions remain technically challenging due to TFs having relatively low abundance. Moreover, an efficient CUT&Tag strategy for plant TFs is not yet available. Here, we first applied biotinylated Tn5 transposase-mediated CUT&Tag (B-CUT&Tag) to produce high-quality libraries for interrogating TF-DNA interactions. B-CUT&Tag combines streptavidin-biotin-based DNA purification with routine CUT&Tag, optimizing the removal of large amounts of intact chromatin not targeted by specific TFs. The biotinylated chromatin fragments are then purified for construction of deep sequencing libraries or qPCR analysis. We applied B-CUT&Tag to probe genome-wide DNA targets of Squamosa promoter-binding-like protein 9 (SPL9), a well-established TF in Arabidopsis; the resulting profiles were efficient and consistent in demonstrating its well-established target genes in juvenile-adult transition/flowering, trichome development, flavonoid biosynthesis, wax synthesis and branching. Interestingly, our results indicate functions of AtSPL9 in modulating growth-defence trade-offs. In addition, we established a method for applying qPCR after CUT&Tag (B-CUT&Tag-qPCR) and successfully validated the binding of SPL9 in Arabidopsis and PHR2 in rice. Our study thus provides a convenient and highly efficient CUT&Tag strategy for profiling TF-chromatin interactions that is widely applicable to the annotation of cis-regulatory elements for crop improvement.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Arabidopsis/génétique , Arabidopsis/métabolisme , ADN/génétique , ADN/métabolisme , Chromatine/métabolisme , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme
3.
Front Plant Sci ; 13: 864927, 2022.
Article de Anglais | MEDLINE | ID: mdl-35845707

RÉSUMÉ

Phytophthora capsici is a destructive oomycete pathogen that causes devastating disease in black pepper, resulting in a significant decline in yield and economic losses. Piper nigrum (black pepper) is documented as susceptible to P. capsici, whereas its close relative Piper flaviflorum is known to be resistant. However, the molecular mechanism underlying the resistance of P. flaviflorum remains obscure. In this study, we conducted a comparative transcriptome and metabolome analysis between P. flaviflorum and P. nigrum upon P. capsici infection and found substantial differences in their gene expression profiles, with altered genes being significantly enriched in terms relating to plant-pathogen interaction, phytohormone signal transduction, and secondary metabolic pathways, including phenylpropanoid biosynthesis. Further metabolome analysis revealed the resistant P. flaviflorum to have a high background endogenous ABA reservoir and time-course-dependent accumulation of ABA and SA upon P. capsici inoculation, while the susceptible P. nigrum had a high background endogenous IAA reservoir and time-course-dependent accumulation of JA-Ile, the active form of JA. Investigation of the phenylpropanoid biosynthesis metabolome further indicated the resistant P. flaviflorum to have more accumulation of lignin precursors than the susceptible P. nigrum, resulting in a higher accumulation after inoculation. This study provides an overall characterization of biologically important pathways underlying the resistance of P. flaviflorum, which theoretically explains the advantage of using this species as rootstock for the management of oomycete pathogen in black pepper production.

4.
Plant Mol Biol ; 83(1-2): 119-29, 2013 Sep.
Article de Anglais | MEDLINE | ID: mdl-23460027

RÉSUMÉ

Oral ingestion of plant-expressed double stranded RNA (dsRNA) triggers target gene suppression in insect. An important step of this process is the transmission of dsRNA from plant to midgut cells. Insect peritrophic matrix (PM) presents a barrier that prevents large molecules from entering midgut cells. Here, we show that uptake of plant cysteine proteases, such as GhCP1 from cotton (Gossypium hirsutum) and AtCP2 from Arabidopsis, by cotton bollworm (Helicoverpa armigera) larvae resulted in attenuating the PM. When GhCP1 or AtCP2 pre-fed larvae were transferred to gossypol-containing diet, the bollworm accumulated higher content of gossypol in midgut. Larvae previously ingested GhCP1 or AtCP2 were more susceptible to infection by Dendrolimus punctatus cytoplasmic polyhedrosis virus (DpCPV), a dsRNA virus. Furthermore, the pre-fed larvae exhibited enhanced RNAi effects after ingestion of the dsRNA-expressing plant. The bollworm P450 gene CYP6AE14 is involved in the larval tolerance to gossypol; cotton plants producing dsRNA of CYP6AE14 (dsCYP6AE14) were more resistant to bollworm feeding (Mao et al. in Transgenic Res 20:665-673, 2011). We found that cotton plants harboring both 35S:dsCYP6AE14 and 35S:GhCP1 were better protected from bollworm than either of the single-transgene lines. Our results demonstrate that plant cysteine proteases, which have the activity of increasing PM permeability, can be used to improve the plant-mediated RNAi against herbivorous insects.


Sujet(s)
Cysteine proteases/métabolisme , Gossypium/enzymologie , Papillons de nuit/physiologie , Interférence par ARN , ARN des plantes/métabolisme , ARN viral/métabolisme , Animaux , Arabidopsis/enzymologie , Arabidopsis/génétique , Perméabilité des membranes cellulaires , Cysteine proteases/génétique , Cytochrome P-450 enzyme system/génétique , Cytochrome P-450 enzyme system/métabolisme , Gossypium/génétique , Gossypium/virologie , Gossypol/métabolisme , Gossypol/pharmacologie , Herbivorie , Larve/physiologie , Larve/virologie , Papillons de nuit/virologie , Feuilles de plante/enzymologie , Feuilles de plante/physiologie , Feuilles de plante/virologie , Végétaux génétiquement modifiés/enzymologie , Végétaux génétiquement modifiés/génétique , Végétaux génétiquement modifiés/virologie , ARN double brin/génétique , ARN double brin/métabolisme , ARN des plantes/génétique , ARN viral/génétique , Reoviridae/génétique , Reoviridae/pathogénicité
5.
Mol Ecol ; 21(17): 4371-85, 2012 Sep.
Article de Anglais | MEDLINE | ID: mdl-22515600

RÉSUMÉ

Cotton plants accumulate phytotoxins, including gossypol and related sesquiterpene aldehydes, to resist insect herbivores and pathogens. To counteract these defensive plant secondary metabolites, cotton bollworms (Helicoverpa armigera) elevate their production of detoxification enzymes, including cytochrome P450 monooxygenases (P450s). Besides their tolerance to phytotoxin, cotton bollworms have quickly developed resistance to deltamethrin, a widely used pyrethroid insecticide in cotton field. However, the relationship between host plant secondary metabolites and bollworm insecticide resistance is poorly understood. Here, we show that exogenously expressed CYP6AE14, a gossypol-inducible P450 of cotton bollworm, has epoxidation activity towards aldrin, an organochlorine insecticide, indicating that gossypol-induced P450s participate in insecticide metabolism. Gossypol-ingested cotton bollworm larvae showed higher midgut P450 enzyme activities and exhibited enhanced tolerance to deltamethrin. The midgut transcripts of bollworm larvae administrated with different phytochemicals and deltamethrin were then compared by microarray analysis, which showed that gossypol and deltamethrin induced the most similar P450 expression profiles. Gossypol-induced P450s exhibited high divergence and at least five of them (CYP321A1, CYP9A12, CYP9A14, CYP6AE11 and CYP6B7) contributed to cotton bollworm tolerance to deltamethrin. Knocking down one of them, CYP9A14, by plant-mediated RNA interference (RNAi) rendered the larvae more sensitive to the insecticide. These data demonstrate that generalist insects can take advantage of secondary metabolites from their major host plants to elaborate defence systems against other toxic chemicals, and impairing this defence pathway by RNAi holds a potential for reducing the required dosages of agrochemicals in pest control.


Sujet(s)
Cytochrome P-450 enzyme system/génétique , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Gossypol/pharmacologie , Résistance aux insecticides/génétique , Papillons de nuit/génétique , Aldrine , Animaux , Gossypium , Larve/effets des médicaments et des substances chimiques , Larve/enzymologie , Larve/génétique , Papillons de nuit/effets des médicaments et des substances chimiques , Papillons de nuit/enzymologie , Nitriles , Séquençage par oligonucléotides en batterie , Pyréthrines , Interférence par ARN , Réaction de polymérisation en chaine en temps réel , Transcriptome
6.
Transgenic Res ; 20(3): 665-73, 2011 Jun.
Article de Anglais | MEDLINE | ID: mdl-20953975

RÉSUMÉ

RNA interference (RNAi) plays an important role in regulating gene expression in eukaryotes. Previously, we generated Arabidopsis and tobacco plants expressing double-stranded RNA (dsRNA) targeting a cotton bollworm (Helicoverpa armigera) P450 gene, CYP6AE14. Bollworms fed on transgenic dsCYP6AE14 plants showed suppressed CYP6AE14 expression and reduced growth on gossypol-containing diet (Mao et al., in Nat Biotechnol 25: 1307-1313, 2007). Here we report generation and analysis of dsRNA-expressing cotton (Gossypium hirsutum) plants. Bollworm larvae reared on T2 plants of the ds6-3 line exhibited drastically retarded growth, and the transgenic plants were less damaged by bollworms than the control. Quantitative reverse-transcription polymerase chain reaction (RT-PCR) showed that the CYP6AE14 expression level was reduced in the larvae as early as 4 h after feeding on the transgenic plants; accordingly, the CYP6AE14 protein level dropped. These results demonstrated that transgenic cotton plants expressing dsCYP6AE14 acquired enhanced resistance to cotton bollworms, and that RNAi technology can be used for engineering insect-proof cotton cultivar.


Sujet(s)
Cytochrome P-450 enzyme system/métabolisme , Gossypium/génétique , Lepidoptera/physiologie , Lutte biologique contre les nuisibles , Végétaux génétiquement modifiés/génétique , ARN double brin/métabolisme , Animaux , Cytochrome P-450 enzyme system/génétique , Gossypium/enzymologie , Gossypium/parasitologie , Gossypol/métabolisme , Gossypol/pharmacologie , Larve/effets des médicaments et des substances chimiques , Larve/physiologie , Lepidoptera/effets des médicaments et des substances chimiques , Végétaux génétiquement modifiés/enzymologie , Végétaux génétiquement modifiés/parasitologie , Interférence par ARN , ARN double brin/génétique
7.
Nat Biotechnol ; 25(11): 1307-13, 2007 Nov.
Article de Anglais | MEDLINE | ID: mdl-17982444

RÉSUMÉ

We identify a cytochrome P450 gene (CYP6AE14) from cotton bollworm (Helicoverpa armigera), which permits this herbivore to tolerate otherwise inhibitory concentrations of the cotton metabolite, gossypol. CYP6AE14 is highly expressed in the midgut and its expression correlates with larval growth when gossypol is included in the diet. When larvae are fed plant material expressing double-stranded RNA (dsRNA) specific to CYP6AE14, levels of this transcript in the midgut decrease and larval growth is retarded. Both effects are more dramatic in the presence of gossypol. As a glutathione-S-transferase gene (GST1) is silenced in GST1 dsRNA-expressing plants, feeding insects plant material expressing dsRNA may be a general strategy to trigger RNA interference and could find applications in entomological research and field control of insect pests.


Sujet(s)
Inhibiteurs des enzymes du cytochrome P-450 , Gossypol/toxicité , Protéines d'insecte/antagonistes et inhibiteurs , Lepidoptera/enzymologie , Lutte biologique contre les nuisibles/méthodes , Végétaux génétiquement modifiés/parasitologie , Interférence par ARN , Animaux , Arabidopsis/génétique , Arabidopsis/parasitologie , Cytochrome P-450 enzyme system/génétique , Digestion , Résistance aux substances/génétique , Extinction de l'expression des gènes , Glutathione transferase/antagonistes et inhibiteurs , Glutathione transferase/génétique , Gossypium/génétique , Gossypium/parasitologie , Protéines d'insecte/génétique , Larve/effets des médicaments et des substances chimiques , Larve/enzymologie , Larve/génétique , Lepidoptera/effets des médicaments et des substances chimiques , Lepidoptera/génétique , Données de séquences moléculaires , Végétaux génétiquement modifiés/génétique , ARN double brin/génétique , ARN double brin/métabolisme , ARN des plantes/génétique , ARN des plantes/métabolisme , Petit ARN interférent/génétique , Petit ARN interférent/métabolisme , Nicotiana/génétique , Nicotiana/parasitologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE