Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 68
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
bioRxiv ; 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-39372776

RÉSUMÉ

Cryo-electron tomography (cryoET) provides sub-nanometer protein structure within the dense cellular environment. Existing sample preparation methods are insufficient at accessing the plasma membrane and its associated proteins. Here, we present a correlative cryo-electron tomography pipeline optimally suited to image large ultra-thin areas of isolated basal and apical plasma membranes. The pipeline allows for angstrom-scale structure determination with sub-tomogram averaging and employs a genetically-encodable rapid chemically-induced electron microscopy visible tag for marking specific proteins within the complex cell environment. The pipeline provides fast, efficient, distributable, low-cost sample preparation and enables targeted structural studies of identified proteins at the plasma membrane of cells.

2.
Mol Biol Cell ; : mbcE24050226, 2024 Sep 18.
Article de Anglais | MEDLINE | ID: mdl-39292879

RÉSUMÉ

Cellular communication is regulated at the plasma membrane by the interactions of receptor, adhesion, signaling, and endocytic proteins. Yet, the composition and control of these complexes in response to external cues remain unclear. We use high-resolution and high-throughput fluorescence imaging to map the localization of growth factor receptors and related proteins at single clathrin-coated structures in human squamous HSC3 cells. We find distinct protein signatures between control cells and cells stimulated with growth factors. Clathrin sites at the plasma membrane are preloaded with some receptors but not others. Stimulation with epidermal growth factor induces capture and concentration of epidermal growth factor-, fibroblast growth factor-, and low-density lipoprotein-receptors (EGFR, FGFR1, and LDLR). Regulatory proteins including ubiquitin ligase Cbl, the scaffold Grb2, and the mechanoenzyme dynamin2 are also recruited. Disrupting FGFR or EGFR activity with drugs prevents the recruitment of both EGFR and FGFR1. EGF was able to activate FGFR1 phosphorylation. Our data reveals novel co-clustering and activation of receptors and regulatory factors at clathrin-coated sites in response to stimulation by a single growth factor, EGF or FGF. This behavior integrates growth factor signaling and allows for complex responses to extracellular cues and drugs at the plasma membrane of human cells.

4.
bioRxiv ; 2024 May 18.
Article de Anglais | MEDLINE | ID: mdl-38903101

RÉSUMÉ

Cellular communication is regulated at the plasma membrane by the interactions of receptor, adhesion, signaling, exocytic, and endocytic proteins. Yet, the composition and control of these nanoscale complexes in response to external cues remain unclear. Here, we use high-resolution and high-throughput fluorescence imaging to map the localization of growth factor receptors and related proteins at single clathrin-coated structures across the plasma membrane of human squamous HSC3 cells. We find distinct protein signatures between control cells and cells stimulated with ligands. Clathrin sites at the plasma membrane are preloaded with some receptors but not others. Stimulation with epidermal growth factor induces a capture and concentration of epidermal growth factor-, fibroblast growth factor-, and low-density lipoprotein-receptors (EGFR, FGFR, and LDLR). Regulatory proteins including ubiquitin ligase Cbl, the scaffold Grb2, and the mechanoenzyme dynamin2 are also recruited. Disrupting FGFR or EGFR individually with drugs prevents the recruitment of both EGFR and FGFR. Our data reveals novel crosstalk between multiple unrelated receptors and regulatory factors at clathrin-coated sites in response to stimulation by a single growth factor, EGF. This behavior integrates growth factor signaling and allows for complex responses to extracellular cues and drugs at the plasma membrane of human cells.

5.
Cell Discov ; 10(1): 62, 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38862506

RÉSUMÉ

Membrane budding, which underlies fundamental processes like endocytosis, intracellular trafficking, and viral infection, is thought to involve membrane coat-forming proteins, including the most observed clathrin, to form Ω-shape profiles and helix-forming proteins like dynamin to constrict Ω-profiles' pores and thus mediate fission. Challenging this fundamental concept, we report that polymerized clathrin is required for Ω-profiles' pore closure and that clathrin around Ω-profiles' base/pore region mediates pore constriction/closure in neuroendocrine chromaffin cells. Mathematical modeling suggests that clathrin polymerization at Ω-profiles' base/pore region generates forces from its intrinsically curved shape to constrict/close the pore. This new fission function may exert broader impacts than clathrin's well-known coat-forming function during clathrin (coat)-dependent endocytosis, because it underlies not only clathrin (coat)-dependent endocytosis, but also diverse endocytic modes, including ultrafast, fast, slow, bulk, and overshoot endocytosis previously considered clathrin (coat)-independent in chromaffin cells. It mediates kiss-and-run fusion (fusion pore closure) previously considered bona fide clathrin-independent, and limits the vesicular content release rate. Furthermore, analogous to results in chromaffin cells, we found that clathrin is essential for fast and slow endocytosis at hippocampal synapses where clathrin was previously considered dispensable, suggesting clathrin in mediating synaptic vesicle endocytosis and fission. These results suggest that clathrin and likely other intrinsically curved coat proteins are a new class of fission proteins underlying vesicle budding and fusion. The half-a-century concept and studies that attribute vesicle-coat contents' function to Ω-profile formation and classify budding as coat-protein (e.g., clathrin)-dependent or -independent may need to be re-defined and re-examined by considering clathrin's pivotal role in pore constriction/closure.

7.
Dev Cell ; 59(14): 1783-1793.e5, 2024 Jul 22.
Article de Anglais | MEDLINE | ID: mdl-38663399

RÉSUMÉ

Dynamin assembles as a helical polymer at the neck of budding endocytic vesicles, constricting the underlying membrane as it progresses through the GTPase cycle to sever vesicles from the plasma membrane. Although atomic models of the dynamin helical polymer bound to guanosine triphosphate (GTP) analogs define earlier stages of membrane constriction, there are no atomic models of the assembled state post-GTP hydrolysis. Here, we used cryo-EM methods to determine atomic structures of the dynamin helical polymer assembled on lipid tubules, akin to necks of budding endocytic vesicles, in a guanosine diphosphate (GDP)-bound, super-constricted state. In this state, dynamin is assembled as a 2-start helix with an inner lumen of 3.4 nm, primed for spontaneous fission. Additionally, by cryo-electron tomography, we trapped dynamin helical assemblies within HeLa cells using the GTPase-defective dynamin K44A mutant and observed diverse dynamin helices, demonstrating that dynamin can accommodate a range of assembled complexes in cells that likely precede membrane fission.


Sujet(s)
Membrane cellulaire , Cryomicroscopie électronique , Dynamines , Guanosine triphosphate , Cryomicroscopie électronique/méthodes , Humains , Membrane cellulaire/métabolisme , Cellules HeLa , Dynamines/métabolisme , Dynamines/composition chimique , Dynamines/génétique , Guanosine triphosphate/métabolisme , Hydrolyse , Guanosine diphosphate/métabolisme , Modèles moléculaires , Endocytose/physiologie
8.
J Cell Biol ; 223(4)2024 04 01.
Article de Anglais | MEDLINE | ID: mdl-38353656

RÉSUMÉ

The ability to dynamically assemble contractile networks is required throughout cell physiology, yet direct biophysical mechanisms regulating non-muscle myosin 2 filament assembly in living cells are lacking. Here, we use a suite of dynamic, quantitative imaging approaches to identify deterministic factors that drive myosin filament appearance and amplification. We find that actin dynamics regulate myosin assembly, but that the static actin architecture plays a less clear role. Instead, remodeling of actin networks modulates the local myosin monomer levels and facilitates assembly through myosin:myosin-driven interactions. Using optogenetically controlled myosin, we demonstrate that locally concentrating myosin is sufficient to both form filaments and jump-start filament amplification and partitioning. By counting myosin monomers within filaments, we demonstrate a myosin-facilitated assembly process that establishes filament stacks prior to partitioning into clusters that feed higher-order networks. Together, these findings establish the biophysical mechanisms regulating the assembly of non-muscle contractile structures that are ubiquitous throughout cell biology.


Sujet(s)
Cytosquelette d'actine , Actines , Myosine de type II , Cytosquelette d'actine/métabolisme , Actines/métabolisme , Animaux , Souris , Fibroblastes , Humains , Cellules HEK293 , Myosine de type II/métabolisme
9.
Nat Methods ; 20(12): 1874-1876, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37932396
11.
bioRxiv ; 2023 Apr 27.
Article de Anglais | MEDLINE | ID: mdl-37162845

RÉSUMÉ

The ability to dynamically assemble contractile networks is required throughout cell physiology, yet the biophysical mechanisms regulating non-muscle myosin 2 filament assembly in living cells are lacking. Here we use a suite of dynamic, quantitative imaging approaches to identify deterministic factors that drive myosin filament appearance and amplification. We find that actin dynamics regulate myosin assembly, but that the actin architecture plays a minimal direct role. Instead, remodeling of actin networks modulates the local myosin monomer levels and facilitates assembly through myosin:myosin driven interactions. Using optogenetically controlled myosin, we demonstrate that locally concentrating myosin is sufficient to both form filaments and jump-start filament amplification and partitioning. By counting myosin monomers within filaments, we demonstrate a myosin-facilitated assembly process that establishes sub-resolution filament stacks prior to partitioning into clusters that feed higher-order networks. Together these findings establish the biophysical mechanisms regulating the assembly of non-muscle contractile structures that are ubiquitous throughout cell biology.

12.
Nat Commun ; 14(1): 732, 2023 02 09.
Article de Anglais | MEDLINE | ID: mdl-36759616

RÉSUMÉ

Conformational changes in endocytic proteins are regulators of clathrin-mediated endocytosis. Three clathrin heavy chains associated with clathrin light chains (CLC) assemble into triskelia that link into a geometric lattice that curves to drive endocytosis. Structural changes in CLC have been shown to regulate triskelia assembly in solution, yet the nature of these changes, and their effects on lattice growth, curvature, and endocytosis in cells are unknown. Here, we develop a new correlative fluorescence resonance energy transfer (FRET) and platinum replica electron microscopy method, named FRET-CLEM. With FRET-CLEM, we measure conformational changes in clathrin at thousands of individual morphologically distinct clathrin-coated structures. We discover that the N-terminus of CLC repositions away from the plasma membrane and triskelia vertex as coats curve. Preventing this conformational switch with chemical tools increases lattice sizes and inhibits endocytosis. Thus, a specific conformational switch in the light chain regulates lattice curvature and endocytosis in mammalian cells.


Sujet(s)
Chaines légères de la clathrine , Endocytose , Animaux , Chaines légères de la clathrine/métabolisme , Membrane cellulaire/métabolisme , Clathrine/métabolisme , Chaines lourdes de la clathrine/métabolisme , Mammifères/métabolisme
13.
Nat Biotechnol ; 41(9): 1307-1319, 2023 09.
Article de Anglais | MEDLINE | ID: mdl-36702897

RÉSUMÉ

The axial resolution of three-dimensional structured illumination microscopy (3D SIM) is limited to ∼300 nm. Here we present two distinct, complementary methods to improve axial resolution in 3D SIM with minimal or no modification to the optical system. We show that placing a mirror directly opposite the sample enables four-beam interference with higher spatial frequency content than 3D SIM illumination, offering near-isotropic imaging with ∼120-nm lateral and 160-nm axial resolution. We also developed a deep learning method achieving ∼120-nm isotropic resolution. This method can be combined with denoising to facilitate volumetric imaging spanning dozens of timepoints. We demonstrate the potential of these advances by imaging a variety of cellular samples, delineating the nanoscale distribution of vimentin and microtubule filaments, observing the relative positions of caveolar coat proteins and lysosomal markers and visualizing cytoskeletal dynamics within T cells in the early stages of immune synapse formation.


Sujet(s)
Imagerie tridimensionnelle , Éclairage , Microscopie de fluorescence/méthodes , Imagerie tridimensionnelle/méthodes , Cytosquelette , Lysosomes
14.
Prog Mol Biol Transl Sci ; 194: 159-177, 2023.
Article de Anglais | MEDLINE | ID: mdl-36631191

RÉSUMÉ

The B cell receptor (BCR) interacts with foreign antigens to mediate B cell activation and secretion of antibodies. B cell activation begins with initiation of signaling pathways, such as NFAT, NF-κB, and MAPK, and endocytosis of the BCR-antigen complex. Many studies have investigated the signaling pathways associated with BCR activation, and this work has led to significant advances in drug therapies to treat cancer and autoimmune diseases that are linked to aberrant BCR signaling. Less is known, however, about the mechanisms of BCR endocytosis and the role endocytosis plays in B cell pathogenesis. This chapter will review key characteristics of the BCR, including a review of signaling pathways, and endocytic mechanisms associated with the activated BCR. We will also review recent studies investigating the role of BCR endocytosis disease pathogenesis.


Sujet(s)
Lymphocytes B , Récepteurs pour l'antigène des lymphocytes B , Humains , Récepteurs pour l'antigène des lymphocytes B/métabolisme , Lymphocytes B/métabolisme , Endocytose , Transduction du signal , Facteur de transcription NF-kappa B/métabolisme
15.
Nat Rev Mol Cell Biol ; 24(1): 63-78, 2023 01.
Article de Anglais | MEDLINE | ID: mdl-35918535

RÉSUMÉ

Curved membranes are key features of intracellular organelles, and their generation involves dynamic protein complexes. Here we describe the fundamental mechanisms such as the hydrophobic insertion, scaffolding and crowding mechanisms these proteins use to produce membrane curvatures and complex shapes required to form intracellular organelles and vesicular structures involved in endocytosis and secretion. For each mechanism, we discuss its cellular functions as well as the underlying physical principles and the specific membrane properties required for the mechanism to be feasible. We propose that the integration of individual mechanisms into a highly controlled, robust process of curvature generation often relies on the assembly of proteins into coats. How cells unify and organize the curvature-generating factors at the nanoscale is presented for three ubiquitous coats central for membrane trafficking in eukaryotes: clathrin-coated pits, caveolae, and COPI and COPII coats. The emerging theme is that these coats arrange and coordinate curvature-generating factors in time and space to dynamically shape membranes to accomplish membrane trafficking within cells.


Sujet(s)
Organites , Protéines , Membranes/métabolisme , Protéines/métabolisme , Organites/métabolisme , Membrane cellulaire/métabolisme , Endocytose , Clathrine/métabolisme
16.
Nat Commun ; 13(1): 7234, 2022 11 24.
Article de Anglais | MEDLINE | ID: mdl-36433988

RÉSUMÉ

Caveolae are small coated plasma membrane invaginations with diverse functions. Caveolae undergo curvature changes. Yet, it is unclear which proteins regulate this process. To address this gap, we develop a correlative stimulated emission depletion (STED) fluorescence and platinum replica electron microscopy imaging (CLEM) method to image proteins at single caveolae. Caveolins and cavins are found at all caveolae, independent of curvature. EHD2 is detected at both low and highly curved caveolae. Pacsin2 associates with low curved caveolae and EHBP1 with mostly highly curved caveolae. Dynamin is absent from caveolae. Cells lacking dynamin show no substantial changes to caveolae, suggesting that dynamin is not directly involved in caveolae curvature. We propose a model where caveolins, cavins, and EHD2 assemble as a cohesive structural unit regulated by intermittent associations with pacsin2 and EHBP1. These coats can flatten and curve to enable lipid traffic, signaling, and changes to the surface area of the cell.


Sujet(s)
Cavéoles , Cavéolines , Cavéoles/métabolisme , Membrane cellulaire/métabolisme , Cavéolines/métabolisme , Endocytose , Dynamines/métabolisme , Protéines/métabolisme
17.
Methods Mol Biol ; 2473: 167-180, 2022.
Article de Anglais | MEDLINE | ID: mdl-35819766

RÉSUMÉ

The three-dimensional structures of organelles can be visualized at high resolutions using electron microscopy and tomography. Combining genetically encoded tags with tomography enables the specific targeting and detection of identified proteins inside cells. Here, we describe a method for attaching metal-binding gold nanoparticles to proteins genetically tagged with hexa-histidine sequences. We apply this strategy to visualize the position of intracellular proteins on single organelles in unroofed cells with platinum replica electron microscopy at the nanoscale in three dimensions. We have found that this combined method can label and localize proteins with isotropic high precision to generate quantitative maps of protein positions in and around trafficking organelles at the inner plasma membrane of mammalian cells.


Sujet(s)
Or , Nanoparticules métalliques , Animaux , Mammifères , Microscopie électronique , Organites , Platine
18.
Mol Metab ; 63: 101541, 2022 09.
Article de Anglais | MEDLINE | ID: mdl-35835371

RÉSUMÉ

OBJECTIVES: Pancreatic beta cells secrete insulin postprandially and during fasting to maintain glucose homeostasis. Although glucose-stimulated insulin secretion (GSIS) has been extensively studied, much less is known about basal insulin secretion. Here, we performed a genome-wide CRISPR/Cas9 knockout screen to identify novel regulators of insulin secretion. METHODS: To identify genes that cell autonomously regulate insulin secretion, we engineered a Cas9-expressing MIN6 subclone that permits irreversible fluorescence labeling of exocytic insulin granules. Using a fluorescence-activated cell sorting assay of exocytosis in low glucose and high glucose conditions in individual cells, we performed a genome-wide CRISPR/Cas9 knockout screen. RESULTS: We identified several members of the COMMD family, a conserved family of proteins with central roles in intracellular membrane trafficking, as positive regulators of basal insulin secretion, but not GSIS. Mechanistically, we show that the Commander complex promotes insulin granules docking in basal state. This is mediated, at least in part, by its function in ITGB1 recycling. Defective ITGB1 recycling reduces its membrane distribution, the number of focal adhesions and cortical ELKS-containing complexes. CONCLUSIONS: We demonstrated a previously unknown function of the Commander complex in basal insulin secretion. We showed that by ITGB1 recycling, Commander complex increases cortical adhesions, which enhances the assembly of the ELKS-containing complexes. The resulting increase in the number of insulin granules near the plasma membrane strengthens basal insulin secretion.


Sujet(s)
Cellules à insuline , Exocytose , Glucose/métabolisme , Insuline/métabolisme , Sécrétion d'insuline , Cellules à insuline/métabolisme
19.
Nat Commun ; 13(1): 905, 2022 02 16.
Article de Anglais | MEDLINE | ID: mdl-35173166

RÉSUMÉ

The crosstalk between growth factor and adhesion receptors is key for cell growth and migration. In pathological settings, these receptors are drivers of cancer. Yet, how growth and adhesion signals are spatially organized and integrated is poorly understood. Here we use quantitative fluorescence and electron microscopy to reveal a mechanism where flat clathrin lattices partition and activate growth factor signals via a coordinated response that involves crosstalk between epidermal growth factor receptor (EGFR) and the adhesion receptor ß5-integrin. We show that ligand-activated EGFR, Grb2, Src, and ß5-integrin are captured by clathrin coated-structures at the plasma membrane. Clathrin structures dramatically grow in response to EGF into large flat plaques and provide a signaling platform that link EGFR and ß5-integrin through Src-mediated phosphorylation. Disrupting this EGFR/Src/ß5-integrin axis prevents both clathrin plaque growth and dampens receptor signaling. Our study reveals a reciprocal regulation between clathrin lattices and two different receptor systems to coordinate and enhance signaling. These findings have broad implications for the regulation of growth factor signaling, adhesion, and endocytosis.


Sujet(s)
Vésicules tapissées de clathrine/métabolisme , Clathrine/composition chimique , Protéine adaptatrice GRB2/métabolisme , Chaines bêta des intégrines/métabolisme , Adhérence cellulaire/physiologie , Lignée cellulaire tumorale , Membrane cellulaire/métabolisme , Mouvement cellulaire/physiologie , Prolifération cellulaire/physiologie , Endocytose , Récepteurs ErbB/métabolisme , Humains , Microscopie électronique , Transduction du signal/physiologie , src-Family kinases/métabolisme
20.
iScience ; 25(2): 103809, 2022 Feb 18.
Article de Anglais | MEDLINE | ID: mdl-35198874

RÉSUMÉ

Clathrin-mediated endocytosis, the most prominent endocytic mode, is thought to be generated primarily from relatively flat patches of the plasma membrane. By employing conventional and platinum replica electron microscopy and super-resolution STED microscopy in neuroendocrine chromaffin cells, we found that large Ω-shaped or dome-shaped plasma membrane invaginations, previously thought of as the precursor of bulk endocytosis, are primary sites for clathrin-coated pit generation after depolarization. Clathrin-coated pits are more densely packed at invaginations rather than flat membranes, suggesting that invaginations are preferred sites for clathrin-coated pit formation, likely because their positive curvature facilitates coated-pit formation. Thus, clathrin-mediated endocytosis closely collaborates with bulk endocytosis to enhance endocytic capacity in active secretory cells. This direct collaboration between two classically independent endocytic pathways is of broad importance given the central role of both clathrin-mediated endocytosis and bulk endocytosis in neurons, endocrine cells, immune cells, and many other cell types throughout the body.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE