Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
2.
Chem ; 6(7): 1755-1765, 2020 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-32685768

RÉSUMÉ

Single-crystal X-ray diffraction analysis (SCXRD) constitutes a universal approach for the elucidation of molecular structure and the study of crystalline forms. However, the discovery of viable crystallization conditions remains both experimentally challenging and resource intensive in both time and the quantity of analyte(s). We report a robot-assisted, high-throughput method for the crystallization of organic-soluble small molecules in which we employ only micrograms of analyte per experiment. This allows hundreds of crystallization conditions to be screened in parallel with minimal overall sample requirements. Crystals suitable for SCXRD are grown from nanoliter droplets of a solution of analyte in organic solvent(s), each of which is encapsulated within an inert oil to control the rate of solvent loss. This encapsulated nanodroplet crystallization methodology can also be used to search for new crystal forms, as exemplified through both our discovery of a new (13th) polymorph of the olanzapine precursor ROY and SCXRD analysis of the "uncrystallizable" agrochemical dithianon.

3.
Nucleic Acids Res ; 34(5): 1439-49, 2006.
Article de Anglais | MEDLINE | ID: mdl-16528101

RÉSUMÉ

The Lrp/AsnC family of transcriptional regulatory proteins is found in both archaea and bacteria. Members of the family influence cellular metabolism in both a global (Lrp) and specific (AsnC) manner, often in response to exogenous amino acid effectors. In the present study we have determined both the first bacterial and the highest resolution structures for members of the family. Escherichia coli AsnC is a specific gene regulator whose activity is triggered by asparagine binding. Bacillus subtilis LrpC is a global regulator involved in chromosome condensation. Our AsnC-asparagine structure is the first for a regulator-effector complex and is revealed as an octameric disc. Key ligand recognition residues are identified together with a route for ligand access. The LrpC structure reveals a stable octamer supportive of a topological role in dynamic DNA packaging. The structures yield significant clues to the functionality of Lrp/AsnC-type regulators with respect to ligand binding and oligomerization states as well as to their role in specific and global DNA regulation.


Sujet(s)
Protéines bactériennes/composition chimique , Protéines Escherichia coli/composition chimique , Modèles moléculaires , Transactivateurs/composition chimique , Facteurs de transcription/composition chimique , Séquence d'acides aminés , Asparagine/composition chimique , Asparagine/métabolisme , Bacillus subtilis , Protéines bactériennes/classification , Protéines bactériennes/métabolisme , Protéines Escherichia coli/classification , Protéines Escherichia coli/métabolisme , Régulation de l'expression des gènes bactériens , Ligands , Données de séquences moléculaires , Alignement de séquences , Transactivateurs/classification , Transactivateurs/métabolisme , Facteurs de transcription/classification , Facteurs de transcription/métabolisme , Transcription génétique
4.
Structure ; 13(9): 1341-51, 2005 Sep.
Article de Anglais | MEDLINE | ID: mdl-16154091

RÉSUMÉ

We have determined the structure of the enzyme RecU from Bacillus subtilis, that is the general Holliday junction resolving enzyme in Gram-positive bacteria. The enzyme fold reveals a striking similarity to a class of resolvase enzymes found in archaeal sources and members of the type II restriction endonuclease family to which they are related. The structure confirms the presence of active sites formed around clusters of acidic residues that we have also shown to bind divalent cations. Mutagenesis data presented here support the key role of certain residues. The RecU structure suggests a basis for Holliday junction selectivity and suggests how sequence-specific cleavage might be achieved. Models for a resolvase-DNA complex address how the enzyme might organize junctions into an approximately 4-fold symmetric form.


Sujet(s)
Bacillus subtilis/enzymologie , Protéines de liaison à l'ADN/composition chimique , Holliday junction resolvases/composition chimique , Séquence d'acides aminés , Sites de fixation , ADN/composition chimique , Protéines de liaison à l'ADN/génétique , Holliday junction resolvases/génétique , Holliday junction resolvases/métabolisme , Données de séquences moléculaires , Mutagenèse , Mutation , Conformation d'acide nucléique , Conformation des protéines , Spécificité du substrat
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...