Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Gamme d'année
1.
Preprint de Anglais | medRxiv | ID: ppmedrxiv-21252319

RÉSUMÉ

ImportanceThe COVID-19 pandemic had a wide-ranging impact on educational institutions across the United States. Given potential financial challenges and adverse psychosocial effects of campus closure, as done in the spring of 2020 in response to the first wave, many institutions of higher education developed strategies to allow campuses to reopen and operate in the fall despite the ongoing threat of COVID-19. Many however opted to have limited campus re-opening in order to minimize potential risk of spread of SARS-CoV-2. ObjectiveTo analyze how Boston University (BU) fully reopened its campus in the fall of 2020 and controlled COVID-19 transmission despite worsening transmission in the city of Boston. DesignMulti-faceted intervention case study. SettingLarge urban university campus. InterventionsThe BU response included a high-throughput SARS-CoV-2 PCR testing facility with capacity to delivery results in less than 24 hours; routine asymptomatic screening for COVID-19; daily health attestations; compliance monitoring and feedback; robust contact tracing, quarantine and isolation in on campus facilities; face mask use; enhanced hand hygiene; social distancing recommendations; de-densification of classrooms and public places; and enhancement of all building air systems. Main Outcomes and MeasuresBetween August and December 2020, BU conducted >500,000 COVID-19 tests and identified 719 individuals with COVID-19: 627 (87.2%) students, 11 (1.5%) faculty, and 212 (25.5%) staff. Overall, about 1.8% of the BU community tested positive. Infections among faculty and staff were mostly acquired off campus, while undergraduate infections were more likely acquired in non-classroom campus settings. Of 837 close contacts traced, 86 (10.3%) tested positive for COVID-19. BU contact tracers identified a source of transmission for 51.5% of cases with 55.7% identifying a source outside of BU. Among infected faculty and staff with a known source of infection, the majority reported a transmission source outside of BU (100% for faculty and 79.8% for staff). Conclusions and RelevanceBU was successful in containing COVID-19 transmission on campus while minimizing off campus acquisition of COVID-19 from the greater Boston area. A coordinated strategy of testing, contact tracing, isolation and quarantine, with robust management and oversight, can control COVID-19 transmission, even in an urban university setting.

2.
Pharm Dev Technol ; 25(5): 579-587, 2020 Jun.
Article de Anglais | MEDLINE | ID: mdl-31967908

RÉSUMÉ

In this study, two licensed total parenteral nanoemulsion formulations (Clinoleic® and Intralipid®) were loaded with ciprofloxacin (CP). The physicochemical characteristics and stability profiles of the formulations were investigated using a range of drug concentrations. Furthermore, formulation stability was evaluated over a period of six months at room temperature (RT) or 4 °C. Loading CP into nanoemulsions resulted in no significant differences in their measured droplet size, polydispersity index (PI), zeta potential, and pH. Drug entrapment efficiency (EE) was relatively high for all formulations, regardless of nanoemulsion type, and the drug release was sustained over 24 h. Stability studies of all formulations were performed at 4 °C and RT for 180 and 60 days, respectively. At 4 °C for 180 days, both Clinoleic® and Intralipid® formulations at a range of drug concentrations (1-10 mg/ml) showed high stabilities measured periodically by the average droplet sizes, PI, pH, and zeta potential values. Similar results, but pH values, were shown when the formulations for both nanoemulsion stored at RT for 60 days. Overall, this study has shown that CP was successfully loaded into clinically licensed TPN lipid nanoemulsions. The resultant CP-loaded nanoemulsion formulations demonstrated desirable physicochemical properties and were stable upon storage at 4 °C for up to six months.


Sujet(s)
Antibactériens/administration et posologie , Ciprofloxacine/administration et posologie , Vecteurs de médicaments/composition chimique , Émulsion lipidique intraveineuse/composition chimique , Nanostructures/composition chimique , Phospholipides/composition chimique , Huiles végétales/composition chimique , Huile de soja/composition chimique , Biodisponibilité , Préparation de médicament , Libération de médicament , Stabilité de médicament , Stockage de médicament , Émulsions/composition chimique , Concentration en ions d'hydrogène , Taille de particule
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...