Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Int J Mol Sci ; 25(18)2024 Sep 17.
Article de Anglais | MEDLINE | ID: mdl-39337481

RÉSUMÉ

Usher syndrome (USH) is an inherited disorder characterized by sensorineural hearing loss (SNHL), retinitis pigmentosa (RP)-related vision loss, and vestibular dysfunction. USH presents itself as three distinct clinical types, 1, 2, and 3, with no biomarker for early detection. This study aimed to explore whether microRNA (miRNA) expression in USH cell lines is dysregulated compared to the miRNA expression pattern in a cell line derived from a healthy human subject. Lymphocytes from USH patients and healthy individuals were isolated and transformed into stable cell lines using Epstein-Barr virus (EBV). DNA from these cell lines was sequenced using a targeted panel to identify gene variants associated with USH types 1, 2, and 3. Microarray analysis was performed on RNA from both USH and control cell lines using NanoString miRNA microarray technology. Dysregulated miRNAs identified by the microarray were validated using droplet digital PCR technology. DNA sequencing revealed that two USH patients had USH type 1 with gene variants in USH1B (MYO7A) and USH1D (CDH23), while the other two patients were classified as USH type 2 (USH2A) and USH type 3 (CLRN-1), respectively. The NanoString miRNA microarray detected 92 differentially expressed miRNAs in USH cell lines compared to controls. Significantly altered miRNAs exhibited at least a twofold increase or decrease with a p value below 0.05. Among these miRNAs, 20 were specific to USH1, 14 to USH2, and 5 to USH3. Three miRNAs that are known as miRNA-183 family which are crucial for inner ear and retina development, have been significantly downregulated as compared to control cells. Subsequently, droplet digital PCR assays confirmed the dysregulation of the 12 most prominent miRNAs in USH cell lines. This study identifies several miRNA signatures in USH cell lines which may have potential utility in Usher syndrome identification.


Sujet(s)
Analyse de profil d'expression de gènes , microARN , Myosine-VIIa , Syndromes d'Usher , Humains , Syndromes d'Usher/génétique , microARN/génétique , Analyse de profil d'expression de gènes/méthodes , Myosine-VIIa/génétique , Lignée cellulaire , Génotype , Mâle , Femelle , Protéines membranaires/génétique , Adulte , Protéines apparentées aux cadhérines , Protéines de la matrice extracellulaire
2.
PLoS One ; 19(5): e0303598, 2024.
Article de Anglais | MEDLINE | ID: mdl-38768135

RÉSUMÉ

Circulating miRNA has recently emerged as important biomolecules with potential clinical values as diagnostic markers for several diseases. However, to be used as such, it is critical to accurately quantify miRNAs in the clinic. Yet, preanalytical factors that can affect an error-free quantification of these miRNAs have not been explored. This study aimed at investigating several of these preanalytical factors that may affect the accurate quantification of miRNA-451a, miRNA-423-5p and miRNA-199a-3p in human blood samples. We initially evaluated levels of these three miRNAs in red blood cells (RBCs), white blood cells (WBCs), platelets, and plasma by droplet digital PCR (ddPCR). Next, we monitored miRNA levels in whole blood or platelet rich plasma (PRP) stored at different temperatures for different time periods by ddPCR. We also investigated the effects of hemolysis on miRNA concentrations in platelet-free plasma (PFP). Our results demonstrate that more than 97% of miRNA-451a and miRNA-423-5p in the blood are localized in RBCs, with only trace amounts present in WBCs, platelets, and plasma. Highest amount of the miRNA-199a-3p is present in platelets. Hemolysis had a significant impact on both miRNA-451a and miRNA-423-5p concentrations in plasma, however miRNA-199a levels remain unaffected. Importantly, PRP stored at room temperature (RT) or 4°C showed a statistically significant decrease in miRNA-451a levels, while the other two miRNAs were increased, at days 1, 2, 3 and 7. PFP at RT caused statistically significant steady decline in miRNA-451a and miRNA-423-5p, observed at 12, 24, 36, 48 and 72 hours. Levels of the miRNA-199a-3p in PFP was stable during first 72 hours at RT. PFP stored at -20°C for 7 days showed declining stability of miRNA-451a over time. However, at -80°C miRNA-451a levels were stable up to 7 days. Together, our data indicate that hemolysis and blood storage at RT, 4°C and -20°C may have significant negative effects on the accuracy of circulating miRNA-451a and miRNA-423-5p quantification.


Sujet(s)
Érythrocytes , microARN , Humains , microARN/sang , microARN/génétique , Érythrocytes/métabolisme , MicroARN circulant/sang , MicroARN circulant/génétique , Hémolyse , Plaquettes/métabolisme , Leucocytes/métabolisme
3.
Virol J ; 20(1): 49, 2023 03 22.
Article de Anglais | MEDLINE | ID: mdl-36949545

RÉSUMÉ

BACKGROUND: The human skin contains a diverse microbiome that provides protective functions against environmental pathogens. Studies have demonstrated that bacteriophages modulate bacterial community composition and facilitate the transfer of host-specific genes, potentially influencing host cellular functions. However, little is known about the human skin virome and its role in human health. Especially, how viral-host relationships influence skin microbiome structure and function is poorly understood. RESULTS: Population dynamics and genetic diversity of bacteriophage communities in viral metagenomic data collected from three anatomical skin locations from 60 subjects at five different time points revealed that cutaneous bacteriophage populations are mainly composed of tailed Caudovirales phages that carry auxiliary genes to help improve metabolic remodeling to increase bacterial host fitness through antimicrobial resistance. Sequence variation in the MRSA associated antimicrobial resistance gene, erm(C) was evaluated using targeted sequencing to further confirm the presence of antimicrobial resistance genes in the human virome and to demonstrate how functionality of such genes may influence persistence and in turn stabilization of bacterial host and their functions. CONCLUSIONS: This large temporal study of human skin associated viruses indicates that the human skin virome is associated with auxiliary metabolic genes and antimicrobial resistance genes to help increase bacterial host fitness.


Sujet(s)
Bactériophages , Microbiote , Virus , Humains , Virome , Bactériophages/génétique , Virus/génétique , Métagénome , Bactéries/génétique
4.
J Anim Sci ; 99(4)2021 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-33693672

RÉSUMÉ

Liver abscesses in feedlot cattle are polymicrobial infections. Culture-based studies have identified Fusobacterium necrophorum as the primary causative agent, but a number of other bacterial species are frequently isolated. The incidence of liver abscesses is highly variable and is affected by a number of factors, including cattle type. Holstein steers raised for beef production have a higher incidence than crossbred feedlot cattle. Tylosin is the commonly used antimicrobial feed additive to reduce the incidence of liver abscesses. The objective of this study was to utilize 16S ribosomal RNA amplicon sequence analyses to analyze the bacterial community composition of purulent material of liver abscesses of crossbred cattle (n = 24) and Holstein steers (n = 24), each fed finishing diet with or without tylosin. DNA was extracted and the V3 and V4 regions of the 16S rRNA gene were amplified, sequenced, and analyzed. The minimum, mean, and maximum sequence reads per sample were 996, 177,070, and 877,770, respectively, across all the liver abscess samples. Sequence analyses identified 5 phyla, 14 families, 98 genera, and 102 amplicon sequence variants (ASV) in the 4 treatment groups. The dominant phyla identified were Fusobacteria (52% of total reads) and Proteobacteria (33%). Of the top 25 genera identified, 17 genera were Gram negative and 8 were Gram positive. The top 3 genera, which accounted for 75% of the total reads, in the order of abundance, were Fusobacterium, Pseudomonas, and Bacteroides. The relative abundance, expressed as percent of total reads, of phyla, family, and genera did not differ (P > 0.05) between the 4 treatment groups. Generic richness and evenness, determined by Shannon-Weiner and Simpson's diversity indices, respectively, did not differ between the groups. The UniFrac distance matrices data revealed no clustering of the ASV indicating variance between the samples within each treatment group. Co-occurrence network analysis at the genus level indicated a strong association of Fusobacterium with 15 other genera, and not all of them have been previously isolated from liver abscesses. In conclusion, the culture-independent method identified the bacterial composition of liver abscesses as predominantly Gram negative and Fusobacterium as the dominant genus, followed by Pseudomonas. The bacterial community composition did not differ between crossbred and Holstein steers fed finishing diets with or without tylosin.


Sujet(s)
Maladies des bovins , Abcès du foie , Aliment pour animaux/analyse , Animaux , Bovins , Régime alimentaire/médecine vétérinaire , Abcès du foie/médecine vétérinaire , ARN ribosomique 16S/génétique , Tylosine
5.
Commun Biol ; 3(1): 760, 2020 12 11.
Article de Anglais | MEDLINE | ID: mdl-33311550

RÉSUMÉ

The majority of microbiome studies focused on understanding mechanistic relationships between the host and the microbiota have used mice and other rodents as the model of choice. However, the domestic pig is a relevant model that is currently underutilized for human microbiome investigations. In this study, we performed a direct comparison of the engraftment of fecal bacterial communities from human donors between human microbiota-associated (HMA) piglet and mouse models under identical dietary conditions. Analysis of 16S rRNA genes using amplicon sequence variants (ASVs) revealed that with the exception of early microbiota from infants, the more mature microbiotas tested established better in the HMA piglets compared to HMA mice. Of interest was the greater transplantation success of members belonging to phylum Firmicutes in the HMA piglets compared to the HMA mice. Together, these results provide evidence for the HMA piglet model potentially being more broadly applicable for donors with more mature microbiotas while the HMA mouse model might be more relevant for developing microbiotas such as those of infants. This study also emphasizes the necessity to exercise caution in extrapolating findings from HMA animals to humans, since up to 28% of taxa from some donors failed to colonize either model.


Sujet(s)
Fèces/microbiologie , Microbiome gastro-intestinal , Animaux , Bactéries/classification , Bactéries/génétique , Biodiversité , Biologie informatique/méthodes , Modèles animaux de maladie humaine , Axénie , Humains , Métagénome , Métagénomique/méthodes , Souris , Phylogenèse , Reproductibilité des résultats
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE