Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Sci Adv ; 9(4): eadd6688, 2023 Jan 25.
Article de Anglais | MEDLINE | ID: mdl-36696502

RÉSUMÉ

Pythia's Oasis is a newly discovered seafloor seep on the Central Oregon segment of the Cascadia Subduction Zone, where focused venting emits highly altered fluids ~9°C above the background temperature. The seep fluid chemistry is unique for Cascadia and includes extreme enrichment of boron and lithium and depletion of chloride, potassium, and magnesium. We conclude that the fluids are sourced from pore water compaction and mineral dehydration reactions with minimum source temperatures of 150° to 250°C, placing the source at or near the plate boundary offshore Central Oregon. Estimated fluid flow rates of 10 to 30 cm s-1 are orders of magnitude higher than those estimated elsewhere along the margin and are likely driven by extreme overpressures along the plate boundary. Probable draining of the overpressured reservoir along the vertical Alvin Canyon Fault indicates the important role that such faults may play in the regulation of pore fluid pressure throughout the forearc in Central Cascadia.

2.
Nat Commun ; 13(1): 3969, 2022 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-35803918

RÉSUMÉ

The updip limit of seismic rupture during a megathrust earthquake exerts a major control on the size of the resulting tsunami. Offshore Northern Chile, the 2014 Mw 8.1 Iquique earthquake ruptured the plate boundary between 19.5° and 21°S. Rupture terminated under the mid-continental slope and did not propagate updip to the trench. Here, we use state-of-the-art seismic reflection data to investigate the tectonic setting associated with the apparent updip arrest of rupture propagation at 15 km depth during the Iquique earthquake. We document a spatial correspondence between the rupture area and the seismic reflectivity of the plate boundary. North and updip of the rupture area, a coherent, highly reflective plate boundary indicates excess fluid pressure, which may prevent the accumulation of elastic strain. In contrast, the rupture area is characterized by the absence of plate boundary reflectivity, which suggests low fluid pressure that results in stress accumulation and thus controls the extent of earthquake rupture. Generalizing these results, seismic reflection data can provide insights into the physical state of the shallow plate boundary and help to assess the potential for future shallow rupture in the absence of direct measurements of interplate deformation from most outermost forearc slopes.

3.
PLoS One ; 12(10): e0186127, 2017.
Article de Anglais | MEDLINE | ID: mdl-29073230

RÉSUMÉ

In order to study the long-term stability of fin whale (Balaenoptera physalus) singing behavior, the frequency and inter-pulse interval of fin whale 20 Hz vocalizations were observed over 10 years from 2003-2013 from bottom mounted hydrophones and seismometers in the northeast Pacific Ocean. The instrument locations extended from 40°N to 48°N and 130°W to 125°W with water depths ranging from 1500-4000 m. The inter-pulse interval (IPI) of fin whale song sequences was observed to increase at a rate of 0.54 seconds/year over the decade of observation. During the same time period, peak frequency decreased at a rate of 0.17 Hz/year. Two primary call patterns were observed. During the earlier years, the more commonly observed pattern had a single frequency and single IPI. In later years, a doublet pattern emerged, with two dominant frequencies and IPIs. Many call sequences in the intervening years appeared to represent a transitional state between the two patterns. The overall trend was consistent across the entire geographical span, although some regional differences exist. Understanding changes in acoustic behavior over long time periods is needed to help establish whether acoustic characteristics can be used to help determine population identity in a widely distributed, difficult to study species such as the fin whale.


Sujet(s)
Rorqual commun/physiologie , Vocalisation animale , Animaux , Océan Pacifique , Spectrographie sonore
4.
Science ; 352(6286): 654-5, 2016 May 06.
Article de Anglais | MEDLINE | ID: mdl-27151849
5.
Science ; 302(5648): 1197-200, 2003 Nov 14.
Article de Anglais | MEDLINE | ID: mdl-14615535

RÉSUMÉ

We simultaneously invert travel times of refracted and wide-angle reflected waves for three-dimensional compressional-wave velocity structure, earthquake locations, and reflector geometry in northwest Washington state. The reflector, interpreted to be the crust-mantle boundary (Moho) of the subducting Juan de Fuca plate, separates intraslab earthquakes into two groups, permitting a new understanding of the origins of intraslab earthquakes in Cascadia. Earthquakes up-dip of the Moho's 45-kilometer depth contour occur below the reflector, in the subducted oceanic mantle, consistent with serpentinite dehydration; earthquakes located down-dip occur primarily within the subducted crust, consistent with the basalt-to-eclogite transformation.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...