Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
bioRxiv ; 2023 May 20.
Article de Anglais | MEDLINE | ID: mdl-37292633

RÉSUMÉ

Our data previously revealed that chemosurviving cancer cells translate specific genes. Here, we find that the m6A-RNA-methyltransferase, METTL3, increases transiently in chemotherapy-treated breast cancer and leukemic cells in vitro and in vivo. Consistently, m6A increases on RNA from chemo-treated cells, and is needed for chemosurvival. This is regulated by eIF2α phosphorylation and mTOR inhibition upon therapy treatment. METTL3 mRNA purification reveals that eIF3 promotes METTL3 translation that is reduced by mutating a 5'UTR m6A-motif or depleting METTL3. METTL3 increase is transient after therapy treatment, as metabolic enzymes that control methylation and thus m6A levels on METTL3 RNA, are altered over time after therapy. Increased METTL3 reduces proliferation and anti-viral immune response genes, and enhances invasion genes, which promote tumor survival. Consistently, overriding phospho-eIF2α prevents METTL3 elevation, and reduces chemosurvival and immune-cell migration. These data reveal that therapy-induced stress signals transiently upregulate METTL3 translation, to alter gene expression for tumor survival.

2.
Sci Adv ; 8(43): eabo1304, 2022 Oct 28.
Article de Anglais | MEDLINE | ID: mdl-36306353

RÉSUMÉ

Quiescent leukemic cells survive chemotherapy, with translation changes. Our data reveal that FXR1, a protein amplified in several aggressive cancers, is elevated in quiescent and chemo-treated leukemic cells and promotes chemosurvival. This suggests undiscovered roles for this RNA- and ribosome-associated protein in chemosurvival. We find that FXR1 depletion reduces translation, with altered rRNAs, snoRNAs, and ribosomal proteins (RPs). FXR1 regulates factors that promote transcription and processing of ribosomal genes and snoRNAs. Ribosome changes in FXR1-overexpressing cells, including RPLP0/uL10 levels, activate eIF2α kinases. Accordingly, phospho-eIF2α increases, enabling selective translation of survival and immune regulators in FXR1-overexpressing cells. Overriding these genes or phospho-eIF2α with inhibitors reduces chemosurvival. Thus, elevated FXR1 in quiescent or chemo-treated leukemic cells alters ribosomes that trigger stress signals to redirect translation for chemosurvival.

3.
Nat Commun ; 11(1): 2834, 2020 06 05.
Article de Anglais | MEDLINE | ID: mdl-32503981

RÉSUMÉ

Recruitment of DNA repair proteins to DNA damage sites is a critical step for DNA repair. Post-translational modifications of proteins at DNA damage sites serve as DNA damage codes to recruit specific DNA repair factors. Here, we show that mRNA is locally modified by m5C at sites of DNA damage. The RNA methyltransferase TRDMT1 is recruited to DNA damage sites to promote m5C induction. Loss of TRDMT1 compromises homologous recombination (HR) and increases cellular sensitivity to DNA double-strand breaks (DSBs). In the absence of TRDMT1, RAD51 and RAD52 fail to localize to sites of reactive oxygen species (ROS)-induced DNA damage. In vitro, RAD52 displays an increased affinity for DNA:RNA hybrids containing m5C-modified RNA. Loss of TRDMT1 in cancer cells confers sensitivity to PARP inhibitors in vitro and in vivo. These results reveal an unexpected TRDMT1-m5C axis that promotes HR, suggesting that post-transcriptional modifications of RNA can also serve as DNA damage codes to regulate DNA repair.


Sujet(s)
DNA (cytosine-5-)-methyltransferase/métabolisme , Cassures double-brin de l'ADN , Recombinaison homologue , Maturation post-transcriptionnelle des ARN/génétique , ARN messager/métabolisme , Animaux , Lignée cellulaire tumorale , Cytosine/métabolisme , DNA (cytosine-5-)-methyltransferase/génétique , Résistance aux médicaments antinéoplasiques/génétique , Techniques de knock-down de gènes , Humains , Méthylation , Souris , Tumeurs/traitement médicamenteux , Tumeurs/génétique , Tumeurs/anatomopathologie , Inhibiteurs de poly(ADP-ribose) polymérases/pharmacologie , Inhibiteurs de poly(ADP-ribose) polymérases/usage thérapeutique , Petit ARN interférent/métabolisme , Rad51 Recombinase/métabolisme , Protéine Rad52 de réparation-recombinaison de l'ADN/métabolisme , Tests d'activité antitumorale sur modèle de xénogreffe
4.
Genome Biol ; 21(1): 33, 2020 02 10.
Article de Anglais | MEDLINE | ID: mdl-32039742

RÉSUMÉ

BACKGROUND: Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown. RESULTS: We induce chemoresistant and G0 leukemic cells by serum starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the upregulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, Tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα prior to or along with chemotherapy substantially reduces chemoresistance in primary leukemic cells ex vivo and in vivo. CONCLUSIONS: These studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE-bearing mRNAs that promote chemoresistance. By disrupting this pathway, we develop an effective combination therapy against chemosurvival.


Sujet(s)
Éléments riches en AU , Résistance aux médicaments antinéoplasiques , Maturation post-transcriptionnelle des ARN , Tristétraproline/métabolisme , Animaux , Cycle cellulaire , Cellules cultivées , Dual Specificity Phosphatase 1/génétique , Dual Specificity Phosphatase 1/métabolisme , Cellules HepG2 , Humains , Protéines et peptides de signalisation intracellulaire/génétique , Protéines et peptides de signalisation intracellulaire/métabolisme , Cellules K562 , Cellules MCF-7 , Souris , Souris de lignée C57BL , Protein-Serine-Threonine Kinases/génétique , Protein-Serine-Threonine Kinases/métabolisme , Protéome/génétique , Protéome/métabolisme , Cellules THP-1 , Transcriptome , Tristétraproline/génétique , Facteur de nécrose tumorale alpha/métabolisme , p38 Mitogen-Activated Protein Kinases/génétique , p38 Mitogen-Activated Protein Kinases/métabolisme
5.
Methods Mol Biol ; 1686: 251-264, 2018.
Article de Anglais | MEDLINE | ID: mdl-29030826

RÉSUMÉ

Quiescence (G0) is defined as an assortment of cell cycle arrested states that exhibit distinct properties. Leukemias harbor a subpopulation of G0 cells that can be enriched by growth factor deprivation or serum starvation. Target site reporters with shortened poly(A) tails show translation activation by microRNAs, via a noncanonical mechanism, when introduced into the nucleus of G0 cells. This is because recruitment by the activation causing FXR1a-microRNA-protein complex (FXR1a-microRNP) is nuclear and requires shortened poly(A) tails to avoid repressive factors and canonical translation. When introduced into the cytoplasm, target mRNAs and microRNAs are directed toward repression rather than translation activation. Leukemic cell lines are difficult to transfect but can be routinely nucleofected-where in vitro transcribed mRNA reporters and microRNAs are introduced into the nucleus of G0 leukemic cells. Nucleofection of a microRNA target reporter and either cognate, targeting microRNA, or control microRNA, into the nucleus of G0 cells, enables analysis of translation activation by microRNAs in G0. We discuss a modified protocol that we developed for transfection of mRNAs along with microRNAs to test translation regulation by microRNAs in G0 leukemic cells.


Sujet(s)
Leucémie aigüe monoblastique/métabolisme , Luciferases/génétique , Luciferases/métabolisme , microARN/génétique , Biosynthèse des protéines , ARN messager/métabolisme , Phase G0 , Humains , Leucémie aigüe monoblastique/génétique , ARN messager/génétique
6.
Mol Cell ; 61(5): 760-773, 2016 Mar 03.
Article de Anglais | MEDLINE | ID: mdl-26942679

RÉSUMÉ

MicroRNAs predominantly decrease gene expression; however, specific mRNAs are translationally upregulated in quiescent (G0) mammalian cells and immature Xenopus laevis oocytes by an FXR1a-associated microRNA-protein complex (microRNP) that lacks the microRNP repressor, GW182. Their mechanism in these conditions of decreased mTOR signaling, and therefore reduced canonical (cap-and-poly(A)-tail-mediated) translation, remains undiscovered. Our data reveal that mTOR inhibition in human THP1 cells enables microRNA-mediated activation. Activation requires shortened/no poly(A)-tail targets; polyadenylated mRNAs are partially activated upon PAIP2 overexpression, which interferes with poly(A)-bound PABP, precluding PABP-enhanced microRNA-mediated inhibition and canonical translation. Consistently, inhibition of PARN deadenylase prevents activation. P97/DAP5, a homolog of canonical translation factor, eIF4G, which lacks PABP- and cap binding complex-interacting domains, is required for activation, and thereby for the oocyte immature state. P97 interacts with 3' UTR-binding FXR1a-associated microRNPs and with PARN, which binds mRNA 5' caps, forming a specialized complex to translate recruited mRNAs in these altered canonical translation conditions.


Sujet(s)
Vieillissement de la cellule , microARN/métabolisme , Ovocytes/métabolisme , Biosynthèse des protéines , ARN messager/métabolisme , Protéines de liaison à l'ARN/métabolisme , Ribonucléoprotéines/métabolisme , Régions 3' non traduites , Animaux , Protéines Argonaute/génétique , Protéines Argonaute/métabolisme , Sites de fixation , Lignée cellulaire , Facteur-4G d'initiation eucaryote/génétique , Facteur-4G d'initiation eucaryote/métabolisme , Exoribonucleases/génétique , Exoribonucleases/métabolisme , Analyse de profil d'expression de gènes/méthodes , Humains , microARN/génétique , Protéomique/méthodes , Coiffes des ARN/génétique , Coiffes des ARN/métabolisme , Interférence par ARN , ARN messager/génétique , Protéines de liaison à l'ARN/génétique , Protéines de répression/génétique , Protéines de répression/métabolisme , Ribonucléoprotéines/génétique , Transduction du signal , Sérine-thréonine kinases TOR/génétique , Sérine-thréonine kinases TOR/métabolisme , Transfection , Xenopus laevis
7.
Proc Natl Acad Sci U S A ; 111(41): E4315-22, 2014 Oct 14.
Article de Anglais | MEDLINE | ID: mdl-25261552

RÉSUMÉ

Proliferation arrest and distinct developmental stages alter and decrease general translation yet maintain ongoing translation. The factors that support translation in these conditions remain to be characterized. We investigated an altered translation factor in three cell states considered to have reduced general translation: immature Xenopus laevis oocytes, mouse ES cells, and the transition state of proliferating mammalian cells to quiescence (G0) upon growth-factor deprivation. Our data reveal a transient increase of eukaryotic translation initiation factor 5B (eIF5B), the eukaryotic ortholog of bacterial initiation factor IF2, in these conditions. eIF5B promotes 60S ribosome subunit joining and pre-40S subunit proofreading. eIF5B has also been shown to promote the translation of viral and stress-related mRNAs and can contribute indirectly to supporting or stabilizing initiator methionyl tRNA (tRNA-Met(i)) association with the ribosome. We find that eIF5B is a limiting factor for translation in these three conditions. The increased eIF5B levels lead to increased eIF5B complexes with tRNA-Met(i) upon serum starvation of THP1 mammalian cells. In addition, increased phosphorylation of eukaryotic initiation factor 2α, the translation factor that recruits initiator tRNA-Meti for general translation, is observed in these conditions. Importantly, we find that eIF5B is an antagonist of G0 and G0-like states, as eIF5B depletion reduces maturation of G0-like, immature oocytes and hastens early G0 arrest in serum-starved THP1 cells. Consistently, eIF5B overexpression promotes maturation of G0-like immature oocytes and causes cell death, an alternative to G0, in serum-starved THP1 cells. These data reveal a critical role for a translation factor that regulates specific cell-cycle transition and developmental stages.


Sujet(s)
Points de contrôle du cycle cellulaire , Facteurs d'initiation eucaryotes/génétique , Régulation positive , Animaux , Lignée cellulaire , Survie cellulaire , Milieux de culture sans sérum , Cellules souches embryonnaires/cytologie , Cellules souches embryonnaires/métabolisme , Facteur-2 d'initiation eucaryote/métabolisme , Facteurs d'initiation eucaryotes/métabolisme , Humains , Souris , Ovocytes/cytologie , Ovocytes/métabolisme , Phosphorylation , Biosynthèse des protéines , ARN de transfert de la méthionine , Xenopus laevis
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...