Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Opt Express ; 17(3): 1766-71, 2009 Feb 02.
Article de Anglais | MEDLINE | ID: mdl-19189006

RÉSUMÉ

A method for optical triggering of a Q-switched Nd:YAG laser by direct bleaching of a Cr:YAG saturable absorber is described. This method involves the bleaching of a thin sheet of the saturable absorber from a direction orthogonal to the lasing axis using a single laser diode bar, where the Cr:YAG transmission increased from a non-bleached value of 47% to a bleached value of 63%. For steady state operation of a passively Q-switched laser (PRF=10 Hz), the pulse-to-pulse timing jitter showed approximately 12X reduction in standard deviation, from 241 nsec for free running operation to 20 nsec with optical triggering.

2.
Appl Opt ; 45(25): 6607-15, 2006 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-16912803

RÉSUMÉ

We describe a next-generation monoblock laser capable of a greater than 10 mJ, 1.5 microm output at 10 pulses/s (pps) over broad ambient temperature extremes with no active temperature control. The transmitter design is based on a Nd:YAG laser with a Cr4+ passive Q switch and intracavity potassium titanyl phosphate optical parametric oscillator. To achieve the repetition rate and efficiency goals of this effort, but still have wide temperature capability, the Nd:YAG slab is end pumped with a 12-bar stack of 100 W (each) diode bars. Different techniques for focusing the pump radiation into the 4.25 mmx4.25 mm end of the slab are compared, including a lensed design, a reflective concentrator, and a lens duct. A wide temperature operation (-20 degrees C to 50 degrees C) for each end-pumped configuration is demonstrated.

3.
Appl Opt ; 41(15): 2791-9, 2002 May 20.
Article de Anglais | MEDLINE | ID: mdl-12027165

RÉSUMÉ

A compact imaging laser radar was constructed and tested to investigate phenomenological issues in targeting, especially cases involving imaging through obscurations such as foliage and camouflage netting. The laser radar employs a Nd:YAG microchip laser that operates at a wavelength of 1.06 microm and produces pulses of 1.2-ns duration at a 3-kHz rate. The detector is a commercial indium gallium arsenide avalanche photodiode. A single computer controls the scanning mirrors and performs the digitization of the returning signal at 2 giga samples/s. A detailed description of the laser radar is presented as well as results from field experiments that examined its range accuracy capability and its ability to image a target through camouflage. Results of data collected from deciduous tree lines are also discussed to characterize the presence and quantity of multiple returns.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE