Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 12 de 12
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Sci Total Environ ; 946: 174492, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38969113

RÉSUMÉ

Certain agricultural plastics, i.e., mulching films, are generally considered as potent sources of micro- and nanoplastics (MNPs), due to their direct application on soil and waste mishandling. During the synthesis and fabrication of such agricultural plastics, it is necessary to use chemicals, the so-called plastic additives (PAs), improving the physicochemical properties of the final polymeric product. However, since PAs are loosely bound on the polymer matrix, they can potentially leach into the soil environment with unidentified effects. Clearly, to monitor the fate of PAs in the terrestrial ecosystem, it is necessary to develop accurate, sensitive and robust analytical methods. To this end, a comprehensive analytical strategy was developed for monitoring 16 PAs with diverse physicochemical properties (partition coefficient; -3 < logP<19) in soil samples using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). For this purpose, two different extraction procedures were developed, namely, a single step ultrasound-assisted extraction (UAE) using ethyl acetate or an aqueous solution of methanol and a binary extraction, combining Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) and UAE principles with n-hexane as the extractant. Interestingly, within the sample preparation investigation, we identified in-lab contamination sources of PAs, e.g., centrifuge tubes or microfilters. Such consumables are made of plastic contaminating the procedural blanks and omitting their use was necessary to acquire satisfactory analytical performance. In detail, method validation was performed for 16 compounds achieving recoveries mainly in the range 70-120 %, repeatability (expressed as relative standard deviation, RSD %) < 20 % and limits of quantification (LOQs) ranging between 0.2 and 20 ng/g dry weight (dw). Importantly, the presented strategies are added to the very limited available for PA determination in soil, a topical issue with a significant and rather understudied impact on agriculture.

2.
Sci Total Environ ; 946: 174325, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38942306

RÉSUMÉ

Soil environments across the globe, particularly in agricultural settings, have now been shown to be contaminated with microplastics. Agricultural plastics - such as mulching films - are used in close or direct contact with soils and there is growing evidence demonstrating that they represent a potential source of microplastics. There is a demand to undertake fate and effects studies to understand the behaviour and potential long-term ecological risks of this contamination. Yet, there is a lack of test materials available for this purpose. This study describes the manufacture and characterisation of five large (1-40 kg) batches of microplastic test materials derived from agricultural mulching films. Batches were produced from either polyethylene-based conventional mulching films or starch-polybutadiene adipate terephthalate blend mulching films that are certified biodegradable in soil. Challenges encountered and overcome during the micronisation process provide valuable insights into the future of microplastic test material generation from these material types. This includes difficulties in micronising virgin polyethylene film materials. All five batches were subjected to a thorough physical and chemical characterisation - both of the original virgin films and the subsequent microplastic particles generated - including a screening for the presence of chemical additives. This is a critical step to provide essential information for interpreting particle fate or effects in scientific testing. Trade-offs between obtaining preferred particle typologies and time and cost constraints are elucidated. Several recommendations emerging from the experiences gained in this study are put forward to advance the research field towards greater harmonisation and utilisation of environmentally relevant test materials.

3.
Int J Mol Sci ; 23(19)2022 Sep 23.
Article de Anglais | MEDLINE | ID: mdl-36232503

RÉSUMÉ

Pancreatic lipase (PNLIP, EC 3.1.1.3) plays a pivotal role in the digestion of dietary lipids, a metabolic pathway directly related to obesity. One of the effective strategies in obesity treatment is the inhibition of PNLIP, which is possible to be achieved by specific phenolic compounds occurring in high abundance in some plants. In this study, a multidisciplinary approach is presented investigating the PNLIP inhibitory effect of 33 plants belonging in the Asteraceae botanical family. In the first stage of the study, a rapid and cost-efficient PNLIP assay in a 96-microwell plate format was developed and important parameters were optimized, e.g., the enzyme substrate. Upon PNLIP assay optimization, aqueous and dichloromethane Asteraceae plant extracts were tested and a cut-off inhibition level was set to further analyze only the samples with a significant inhibitory effect (inhibitory rate > 40%), using an ultra-high-performance liquid chromatography hybrid quadrupole time-of-flight mass spectrometry (UHPLC-q-TOF-MS) method. Specifically, a metabolomic suspect screening was performed and 69 phenolic compounds were tentatively identified, including phenolic acids, flavonoids, flavonoid-3-O-glycosides, and flavonoid-7-O-glycosides, amongst others. In the case of aqueous extracts, phytochemicals known for inducing PNLIP inhibitory effect, e.g., compounds containing galloyl molecules or caffeoylquinic acids, were monitored in Chrysanthemum morifolium, Grindella camporum and Hieracium pilosella extracts. All in all, the presented approach combines in vitro bioactivity measurements to high-end metabolomics to identify phenolic compounds with potential medicinal and/or dietary applications.


Sujet(s)
Asteraceae , Asteraceae/composition chimique , Chromatographie en phase liquide à haute performance/méthodes , Chromatographie en phase liquide , Flavonoïdes/composition chimique , Hétérosides , Triacylglycerol lipase , Lipides , Spectrométrie de masse , Dichloro-méthane , Obésité , Phénols/analyse , Composés phytochimiques/analyse , Extraits de plantes/composition chimique , Extraits de plantes/pharmacologie
4.
Molecules ; 27(14)2022 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-35889316

RÉSUMÉ

Honey is a highly consumed commodity due to its potential health benefits upon certain consumption, resulting in a high market price. This fact indicates the need to protect honey from fraudulent acts by delivering comprehensive analytical methodologies. In this study, targeted, suspect and non-targeted metabolomic workflows were applied to identify botanical origin markers of Greek honey. Blossom honey samples (n = 62) and the unifloral fir (n = 10), oak (n = 24), pine (n = 39) and thyme (n = 34) honeys were analyzed using an ultra-high-performance liquid chromatography hybrid quadrupole time-of-flight mass spectrometry (UHPLC-q-TOF-MS) system. Several potential authenticity markers were revealed from the application of different metabolomic workflows. In detail, based on quantitative targeted analysis, three blossom honey markers were found, namely, galangin, pinocembrin and chrysin, while gallic acid concentration was found to be significantly higher in oak honey. Using suspect screening workflow, 12 additional bioactive compounds were identified and semi-quantified, achieving comprehensive metabolomic honey characterization. Lastly, by combining non-targeted screening with advanced chemometrics, it was possible to discriminate thyme from blossom honey and develop binary discriminatory models with high predictive power. In conclusion, a holistic approach to assessing the botanical origin of Greek honey is presented, highlighting the complementarity of the three applied metabolomic approaches.


Sujet(s)
Miel , Thymus (plante) , Marqueurs biologiques , Chromatographie en phase liquide à haute performance/méthodes , Chromatographie en phase liquide , Grèce , Miel/analyse , Spectrométrie de masse/méthodes , Phénols/analyse , Thymus (plante)/composition chimique
5.
PLoS One ; 17(5): e0268433, 2022.
Article de Anglais | MEDLINE | ID: mdl-35594252

RÉSUMÉ

The trend of the number of publications on a research field is often used to quantify research interest and effort, but this measure is biased by general publication record inflation. This study introduces a novel metric as an unbiased and quantitative tool for trend analysis and bibliometrics. The metric was used to reanalyze reported publication trends and perform in-depth trend analyses on patent groups and a broad range of field in the life-sciences. The analyses confirmed that inflation bias frequently results in the incorrect identification of field-specific increased growth. It was shown that the metric enables a more detailed, quantitative and robust trend analysis of peer reviewed publications and patents. Some examples of the metric's uses are quantifying inflation-corrected growth in research regarding microplastics (51% ± 10%) between 2012 and 2018 and detecting inflation-corrected growth increase for transcriptomics and metabolomics compared to genomics and proteomics (Tukey post hoc p<0.0001). The developed trend-analysis tool removes inflation bias from bibliometric trend analyses. The metric improves evidence-driven decision-making regarding research effort investment and funding allocation.


Sujet(s)
Bibliométrie , Matières plastiques
6.
Toxins (Basel) ; 13(11)2021 11 05.
Article de Anglais | MEDLINE | ID: mdl-34822567

RÉSUMÉ

Cereals represent a widely consumed food commodity that might be contaminated by mycotoxins, resulting not only in potential consumer health risks upon dietary exposure but also significant financial losses due to contaminated batch disposal. Thus, continuous improvement of the performance characteristics of methods to enable an effective monitoring of such contaminants in food supply is highly needed. In this study, an ultra-high-performance liquid chromatography coupled to a hybrid quadrupole orbitrap mass analyzer (UHPLC-q-Orbitrap MS) method was optimized and validated in wheat, maize and rye flour matrices. Nineteen analytes were monitored, including both regulated mycotoxins, e.g., ochratoxin A (OTA) or deoxynivalenol (DON), and non-regulated mycotoxins, such as ergot alkaloids (EAs), which are analytes that are expected to be regulated soon in the EU. Low limits of quantification (LOQ) at the part per trillion level were achieved as well as wide linear ranges (four orders of magnitude) and recovery rates within the 68-104% range. Overall, the developed method attained fit-for-purpose results and it highlights the applicability of high-resolution mass spectrometry (HRMS) detection in mycotoxin food analysis.


Sujet(s)
Chromatographie en phase liquide à haute performance/méthodes , Grains comestibles/composition chimique , Farine/analyse , Spectrométrie de masse/méthodes , Chromatographie en phase liquide à haute performance/instrumentation , Spectrométrie de masse/instrumentation , Mycotoxines/analyse , Secale/composition chimique , Triticum/composition chimique , Zea mays/composition chimique
7.
Foods ; 10(6)2021 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-34204284

RÉSUMÉ

Standard methods for chemical food safety testing in official laboratories rely largely on liquid or gas chromatography coupled with mass spectrometry. Although these methods are considered the gold standard for quantitative confirmatory analysis, they require sampling, transferring the samples to a central laboratory to be tested by highly trained personnel, and the use of expensive equipment. Therefore, there is an increasing demand for portable and handheld devices to provide rapid, efficient, and on-site screening of food contaminants. Recent technological advancements in the field include smartphone-based, microfluidic chip-based, and paper-based devices integrated with electrochemical and optical biosensing platforms. Furthermore, the potential application of portable mass spectrometers in food testing might bring the confirmatory analysis from the laboratory to the field in the future. Although such systems open new promising possibilities for portable food testing, few of these devices are commercially available. To understand why barriers remain, portable food analyzers reported in the literature over the last ten years were reviewed. To this end, the analytical performance of these devices and the extent they match the World Health Organization benchmark for diagnostic tests, i.e., the Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Deliverable to end-users (ASSURED) criteria, was evaluated critically. A five-star scoring system was used to assess their potential to be implemented as food safety testing systems. The main findings highlight the need for concentrated efforts towards combining the best features of different technologies, to bridge technological gaps and meet commercialization requirements.

8.
Molecules ; 26(9)2021 May 08.
Article de Anglais | MEDLINE | ID: mdl-34066694

RÉSUMÉ

Honey consumption is attributed to potentially advantageous effects on human health due to its antioxidant capacity as well as anti-inflammatory and antimicrobial activity, which are mainly related to phenolic compound content. Phenolic compounds are secondary metabolites of plants, and their content in honey is primarily affected by the botanical and geographical origin. In this study, a high-resolution mass spectrometry (HRMS) method was applied to determine the phenolic profile of various honey matrices and investigate authenticity markers. A fruitful sample set was collected, including honey from 10 different botanical sources (n = 51) originating from Greece and Poland. Generic liquid-liquid extraction using ethyl acetate as the extractant was used to apply targeted and non-targeted workflows simultaneously. The method was fully validated according to the Eurachem guidelines, and it demonstrated high accuracy, precision, and sensitivity resulting in the detection of 11 target analytes in the samples. Suspect screening identified 16 bioactive compounds in at least one sample, with abscisic acid isomers being the most abundant in arbutus honey. Importantly, 10 markers related to honey geographical origin were revealed through non-targeted screening and the application of advanced chemometric tools. In conclusion, authenticity markers and discrimination patterns were emerged using targeted and non-targeted workflows, indicating the impact of this study on food authenticity and metabolomic fields.


Sujet(s)
Antioxydants/analyse , Benzaldéhydes/analyse , Cinnamates/analyse , Flavonoïdes/analyse , Miel/analyse , Hydroxybenzoates/analyse , Spectrométrie de masse/méthodes , Métabolome , Métabolomique/méthodes , Antioxydants/isolement et purification , Benzaldéhydes/isolement et purification , Cinnamates/isolement et purification , Exactitude des données , Flavonoïdes/isolement et purification , Grèce , Humains , Hydroxybenzoates/isolement et purification , Pologne , Sensibilité et spécificité
9.
Foods ; 10(1)2021 Jan 05.
Article de Anglais | MEDLINE | ID: mdl-33466242

RÉSUMÉ

Pesticides have been extensively used in agriculture to protect crops and enhance their yields, indicating the need to monitor for their toxic residues in foodstuff. To achieve that, chromatographic methods coupled to mass spectrometry is the common analytical approach, combining low limits of detection, wide linear ranges, and high accuracy. However, these methods are also quite expensive, time-consuming, and require highly skilled personnel, indicating the need to seek for alternatives providing simple, low-cost, rapid, and on-site results. In this study, we critically review the available screening methods for pesticide residues on the basis of optical detection during the period 2016-2020. Optical biosensors are commonly miniaturized analytical platforms introducing the point-of-care (POC) era in the field. Various optical detection principles have been utilized, namely, colorimetry, fluorescence (FL), surface plasmon resonance (SPR), and surface enhanced Raman spectroscopy (SERS). Nanomaterials can significantly enhance optical detection performance and handheld platforms, for example, handheld SERS devices can revolutionize testing. The hyphenation of optical assays to smartphones is also underlined as it enables unprecedented features such as one-click results using smartphone apps or online result communication. All in all, despite being in an early stage facing several challenges, i.e., long sample preparation protocols or interphone variation results, such POC diagnostics pave a new road into the food safety field in which analysis cost will be reduced and a more intensive testing will be achieved.

10.
RSC Adv ; 11(19): 11273-11294, 2021 Mar 16.
Article de Anglais | MEDLINE | ID: mdl-35423655

RÉSUMÉ

Honey is a high-value, globally consumed, food product featuring a high market price strictly related to its origin. Moreover, honey origin has to be clearly stated on the label, and quality schemes are prescribed based on its geographical and botanical origin. Therefore, to enhance food quality, it is of utmost importance to develop analytical methods able to accurately and precisely discriminate honey origin. In this study, an all-time scientometric evaluation of the field is provided for the first time using a structured keyword on the Scopus database. The bibliometric analysis pinpoints that the botanical origin discrimination was the most studied authenticity issue, and chromatographic methods were the most frequently used for its assessment. Based on these results, we comprehensively reviewed analytical techniques that have been used in honey authenticity studies. Analytical breakthroughs and bottlenecks on methodologies to assess honey quality parameters using separation, bioanalytical, spectroscopic, elemental and isotopic techniques are presented. Emphasis is given to authenticity markers, and the necessity to apply chemometric tools to reveal them. Altogether, honey authenticity is an ever-growing field, and more advances are expected that will further secure honey quality.

11.
Sensors (Basel) ; 19(24)2019 Dec 17.
Article de Anglais | MEDLINE | ID: mdl-31861204

RÉSUMÉ

Securing food safety standards is crucial to protect the population from health-threatening food contaminants. In the case of pesticide residues, reference procedures typically find less than 1% of tested samples being contaminated, thus indicating the necessity for new tools able to support smart and affordable prescreening. Here, we introduce a hybrid paper-lab-on-a-chip platform, which integrates on-demand injectors to perform multiple step protocols in a single disposable device. Simultaneous detection of enzymatic color response in sample and reference cells, using a regular smartphone, enabled semiquantitative detection of carbofuran, a neurotoxic and EU-banned carbamate pesticide, in a wide concentration range. The resulting evaluation procedure is generic and allows the rejection of spurious measurements based on their dynamic responses, and was effectively applied for the binary detection of carbofuran in apple extracts.

12.
J Food Sci Technol ; 55(8): 2862-2870, 2018 Aug.
Article de Anglais | MEDLINE | ID: mdl-30065395

RÉSUMÉ

It is less than 20 years since nanotechnology found applications in food packaging. The new packaging materials have featured various improved characteristics such as antimicrobial activity and active packaging. However, there is a great controversy about the production cost, safety and suitability of nanocomposite materials to come in contact with foodstuffs. To this end, we critically summarize the literature in order to provide the overview of the current status in the field. A scientometric evaluation is presented for the first time in order to illustrate the state of the art. The USA and the Asian countries are the leaders, while the EU countries follow. Additionally, as the analysis of nanomaterials in food matrices is still in early stage, there is an emerging demand to review the analytical techniques which are capable for the monitoring of nanomaterials. Microscopy, spectroscopy, separation and mass spectrometry techniques show advantages and drawbacks which are discussed. FFF-ICP-MS and sp-ICP-MS have the greatest potential for the detection of inorganic nanoparticles in food. In conclusion, the difficulty of analyzing nanoparticles is increased by the lack of standard solutions, reference materials, standard methods and the limited number of available inter-laboratory proficiency tests.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...