Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 9 de 9
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nat Commun ; 15(1): 6053, 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39025863

RÉSUMÉ

Respiratory viral infections cause morbidity and mortality worldwide. Despite the success of vaccines, vaccination efficacy is weakened by the rapid emergence of viral variants with immunoevasive properties. The development of an off-the-shelf, effective, and safe therapy against respiratory viral infections is thus desirable. Here, we develop NanoSTING, a nanoparticle formulation of the endogenous STING agonist, 2'-3' cGAMP, to function as an immune activator and demonstrate its safety in mice and rats. A single intranasal dose of NanoSTING protects against pathogenic strains of SARS-CoV-2 (alpha and delta VOC) in hamsters. In transmission experiments, NanoSTING reduces the transmission of SARS-CoV-2 Omicron VOC to naïve hamsters. NanoSTING also protects against oseltamivir-sensitive and oseltamivir-resistant strains of influenza in mice. Mechanistically, NanoSTING upregulates locoregional interferon-dependent and interferon-independent pathways in mice, hamsters, as well as non-human primates. Our results thus implicate NanoSTING as a broad-spectrum immune activator for controlling respiratory virus infection.


Sujet(s)
Administration par voie nasale , Nanoparticules , SARS-CoV-2 , Animaux , Nanoparticules/composition chimique , Nanoparticules/administration et posologie , Souris , Cricetinae , SARS-CoV-2/effets des médicaments et des substances chimiques , SARS-CoV-2/immunologie , Modèles animaux de maladie humaine , Humains , Protéines membranaires/agonistes , Protéines membranaires/métabolisme , Femelle , Nucléotides cycliques/pharmacologie , Rats , COVID-19/prévention et contrôle , COVID-19/immunologie , COVID-19/virologie , Infections à Orthomyxoviridae/prévention et contrôle , Infections à Orthomyxoviridae/virologie , Infections à Orthomyxoviridae/immunologie , Infections à Orthomyxoviridae/traitement médicamenteux , Mâle , Antiviraux/pharmacologie , Antiviraux/administration et posologie , Souris de lignée C57BL
2.
EBioMedicine ; 63: 103153, 2021 Jan.
Article de Anglais | MEDLINE | ID: mdl-33279857

RÉSUMÉ

BACKGROUND: The novel human coronavirus SARS-CoV-2 is a major ongoing global threat with huge economic burden. Like all respiratory viruses, SARS-CoV-2 initiates infection in the upper respiratory tract (URT). Infected individuals are often asymptomatic, yet highly infectious and readily transmit virus. A therapy that restricts initial replication in the URT has the potential to prevent progression of severe lower respiratory tract disease as well as limiting person-to-person transmission. METHODS: SARS-CoV-2 Victoria/01/2020 was passaged in Vero/hSLAM cells and virus titre determined by plaque assay. Challenge virus was delivered by intranasal instillation to female ferrets at 5.0 × 106 pfu/ml. Treatment groups received intranasal INNA-051, developed by Ena Respiratory. SARS-CoV-2 RNA was detected using the 2019-nCoV CDC RUO Kit and QuantStudio™ 7 Flex Real-Time PCR System. Histopathological analysis was performed using cut tissues stained with haematoxylin and eosin (H&E). FINDINGS: We show that prophylactic intra-nasal administration of the TLR2/6 agonist INNA-051 in a SARS-CoV-2 ferret infection model effectively reduces levels of viral RNA in the nose and throat. After 5 days post-exposure to SARS-CoV-2, INNA-051 significantly reduced virus in throat swabs (p=<0.0001) by up to a 24 fold (96% reduction) and in nasal wash (p=0.0107) up to a 15 fold (93% reduction) in comparison to untreated animals. INTERPRETATION: The results of our study support clinical development of a therapy based on prophylactic TLR2/6 innate immune activation in the URT, to reduce SARS-CoV-2 transmission and provide protection against COVID-19. FUNDING: This work was funded by Ena Respiratory, Melbourne, Australia.


Sujet(s)
Lipopeptides/administration et posologie , Appareil respiratoire/virologie , SARS-CoV-2/pathogénicité , Récepteur de type Toll-2/agonistes , Récepteur de type Toll-6/agonistes , Excrétion virale , Administration par voie nasale , Animaux , COVID-19/anatomopathologie , Modèles animaux de maladie humaine , Femelle , Furets , Immunité innée , Lipopeptides/composition chimique , Lipopeptides/pharmacologie , Fosse nasale/anatomopathologie , Fosse nasale/virologie , Pharynx/anatomopathologie , Pharynx/virologie , ARN viral/métabolisme , Réaction de polymérisation en chaine en temps réel , Appareil respiratoire/anatomopathologie , SARS-CoV-2/génétique , SARS-CoV-2/isolement et purification , Charge virale/effets des médicaments et des substances chimiques , Traitements médicamenteux de la COVID-19
3.
Front Immunol ; 11: 599083, 2020.
Article de Anglais | MEDLINE | ID: mdl-33281825

RÉSUMÉ

Toll-like receptors (TLRs) are essential components of innate immunity and provide defensive inflammatory responses to invading pathogens. Located within the plasma membranes of cells and also intracellular endosomes, TLRs can detect a range of pathogen associated molecular patterns from bacteria, viruses and fungi. TLR activation on dendritic cells can propagate to an adaptive immune response, making them attractive targets for the development of both prophylactic and therapeutic vaccines. In contrast to conventional adjuvants such as aluminium salts, TLR agonists have a clear immunomodulatory profile that favours anti-allergic T lymphocyte responses. Consequently, the potential use of TLRs as adjuvants in Allergen Immunotherapy (AIT) for allergic rhinitis and asthma remains of great interest. Allergic Rhinitis is a Th2-driven, IgE-mediated disease that occurs in atopic individuals in response to exposure to otherwise harmless aeroallergens such as pollens, house dust mite and animal dander. AIT is indicated in subjects with allergic rhinitis whose symptoms are inadequately controlled by antihistamines and nasal corticosteroids. Unlike anti-allergic drugs, AIT is disease-modifying and may induce long-term disease remission through mechanisms involving upregulation of IgG and IgG4 antibodies, induction of regulatory T and B cells, and immune deviation in favour of Th1 responses that are maintained after treatment discontinuation. This process takes up to three years however, highlighting an unmet need for a more efficacious therapy with faster onset. Agonists targeting different TLRs to treat allergy are at different stages of development. Synthetic TLR4, and TLR9 agonists have progressed to clinical trials, while TLR2, TLR5 and TLR7 agonists been shown to have potent anti-allergic effects in human in vitro experiments and in vivo in animal studies. The anti-allergic properties of TLRs are broadly characterised by a combination of enhanced Th1 deviation, regulatory responses, and induction of blocking antibodies. While promising, a durable effect in larger clinical trials is yet to be observed and further long-term studies and comparative trials with conventional AIT are required before TLR adjuvants can be considered for inclusion in AIT. Here we critically evaluate experimental and clinical studies investigating TLRs and discuss their potential role in the future of AIT.


Sujet(s)
Adjuvants immunologiques/usage thérapeutique , Allergènes , Asthme , Désensibilisation immunologique , Rhinite allergique , Récepteurs de type Toll , Immunité acquise , Allergènes/immunologie , Allergènes/usage thérapeutique , Animaux , Asthme/immunologie , Asthme/thérapie , Humains , Immunité innée , Rhinite allergique/immunologie , Rhinite allergique/thérapie , Récepteurs de type Toll/agonistes , Récepteurs de type Toll/immunologie
4.
J Med Chem ; 59(5): 1711-26, 2016 Mar 10.
Article de Anglais | MEDLINE | ID: mdl-26861551

RÉSUMÉ

Induction of IFNα in the upper airways via activation of TLR7 represents a novel immunomodulatory approach to the treatment of allergic asthma. Exploration of 8-oxoadenine derivatives bearing saturated oxygen or nitrogen heterocycles in the N-9 substituent has revealed a remarkable selective enhancement in IFNα inducing potency in the nitrogen series. Further potency enhancement was achieved with the novel (S)-pentyloxy substitution at C-2 leading to the selection of GSK2245035 (32) as an intranasal development candidate. In human cell cultures, compound 32 resulted in suppression of Th2 cytokine responses to allergens, while in vivo intranasal administration at very low doses led to local upregulation of TLR7-mediated cytokines (IP-10). Target engagement was confirmed in humans following single intranasal doses of 32 of ≥20 ng, and reproducible pharmacological response was demonstrated following repeat intranasal dosing at weekly intervals.


Sujet(s)
Adénine/analogues et dérivés , Asthme/traitement médicamenteux , Découverte de médicament , Pipéridines/administration et posologie , Pipéridines/pharmacologie , Récepteur de type Toll-7/agonistes , Adénine/administration et posologie , Adénine/composition chimique , Adénine/pharmacologie , Administration par voie nasale , Asthme/métabolisme , Relation dose-effet des médicaments , Humains , Structure moléculaire , Pipéridines/composition chimique , Relation structure-activité
5.
Br J Clin Pharmacol ; 77(5): 777-88, 2014 May.
Article de Anglais | MEDLINE | ID: mdl-23909699

RÉSUMÉ

AIMS: To assess the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of intranasal SB-705498, a selective TRPV1 antagonist. METHODS: Two randomized, double-blind, placebo-controlled, clinical studies were performed: (i) an intranasal SB-705498 first time in human study to examine the safety and PK of five single escalating doses from 0.5 to 12 mg and of repeat dosing with 6 mg and 12 mg twice daily for 14 days and (ii) a PD efficacy study in subjects with non-allergic rhinitis (NAR) to evaluate the effect of 12 mg intranasal SB-705498 against nasal capsaicin challenge. RESULTS: Single and repeat dosing with intranasal SB-705498 was safe and well tolerated. The overall frequency of adverse events was similar for SB-705498 and placebo and no dose-dependent increase was observed. Administration of SB-705498 resulted in less than dose proportional AUC(0,12 h) and Cmax , while repeat dosing from day 1 to day 14 led to its accumulation. SB-705498 receptor occupancy in nasal tissue was estimated to be high (>80%). Administration of 12 mg SB-705498 to patients with NAR induced a marked reduction in total symptom scores triggered by nasal capsaicin challenge. Inhibition of rhinorrhoea, nasal congestion and burning sensation was associated with 2- to 4-fold shift in capsaicin potency. CONCLUSIONS: Intranasal SB-705498 has an appropriate safety and PK profile for development in humans and achieves clinically relevant attenuation of capsaicin-provoked rhinitis symptoms in patients with NAR. The potential impact intranasal SB-705498 may have in rhinitis treatment deserves further evaluation.


Sujet(s)
Capsaïcine/antagonistes et inhibiteurs , Pyrrolidines/pharmacologie , Rhinite/traitement médicamenteux , Canaux cationiques TRPV/antagonistes et inhibiteurs , Urée/analogues et dérivés , Adolescent , Adulte , Méthode en double aveugle , Femelle , Humains , Mâle , Adulte d'âge moyen , Pyrrolidines/effets indésirables , Pyrrolidines/pharmacocinétique , Urée/effets indésirables , Urée/pharmacocinétique , Urée/pharmacologie , Échelle visuelle analogique
6.
Allergy Asthma Proc ; 33(4): 333-40, 2012.
Article de Anglais | MEDLINE | ID: mdl-22762553

RÉSUMÉ

Nonallergic rhinitis (NAR) subjects present clinically with similar symptoms to subjects with allergic rhinitis, but which mechanistically are not IgE- mediated. NAR is difficult to study because of multiple, as yet unknown, disease mechanisms and lack of biomarkers and diagnostic tests. The purpose of this proof of concept pilot study was to develop an environmental exposure chamber (EEC) model to simulate weather conditions in a controlled setting to objectively diagnose NAR subjects and ultimately to investigate novel NAR therapies. Thirty-seven subjects with a history of NAR confirmed by negative skin-prick test to a panel of aeroallergens were tested with cold dry air (CDA) and temperature change challenges. Objective (acoustic rhinometry [AcR] and nasal secretions) and subjective measures (total nasal symptom scores [TNSSs]: congestion, rhinorrhea, and postnasal drip [0-3]) were collected. Data was presented as mean ± SEM and statistical significance was assessed by paired t-test. The NAR EEC AcR responders to CDA had a significant decrease in mean minimal cross-sectional area (MCA; a measure of nasal patency) of 22.2 ± 2.43% (p < 0.0001) and 6.7 ± 7.22% (not statistically significant) at 30 and 60 minutes, respectively, with a concomitant increase in TNSS of 1.0 ± 0.24 U and 1.4 ± 0.30 U, respectively. AcR responders to temperature change showed a significant decrease in mean MCA to warm air of 16.0 ± 3.82% (p < 0.001) and 19.4 ± 3.88% (p < 0.0001) at 30 and 60 minutes, respectively, with an increase of TNSS of 0.4 ± 0.25 U and 0.4 ± 0.27 U, respectively. With rapid conversion to cold air, further decrease in mean MCA accompanied by an increase in TNSS was observed at 30 and 60 minutes. Increase in rhinorrhea was highest for CDA and the cold air phase of the temperature change challenge. Using the NAR EEC model, significant symptoms were induced in response to simulated weather changes in NAR patient responders. This proof of concept pilot study shows that the EEC model provides a consistent and reliable method to phenotype weather-induced NAR subjects that could be used to investigate disease mechanisms and novel therapies for NAR.


Sujet(s)
Basse température , Modèles biologiques , Rhinite/étiologie , Rhinite/physiopathologie , Temps (météorologie) , Adulte , Exposition environnementale , Femelle , Humains , Mâle , Adulte d'âge moyen , Muqueuse nasale/métabolisme , Tests de provocation nasale , Projets pilotes , Rhinométrie acoustique
7.
Ann N Y Acad Sci ; 1088: 100-15, 2006 Nov.
Article de Anglais | MEDLINE | ID: mdl-17192559

RÉSUMÉ

Allergies are the result of aberrant immune reactivity against common innocuous environmental proteins (allergens). A pivotal component of allergic pathogenesis is the generation of allergen-specific Th cells with an effector phenotype. These Th cells activate a complex immune cascade that triggers the release of potent mediators and enhances the mobilization of several inflammatory cells types, which in turn elicit the acute allergic reactions and promote the development of chronic inflammation. The current therapies for allergic diseases focus primarily on pharmacological control of symptoms and suppression of inflammation. This approach is beneficial, but not curative, since the underlying immune pathology is not inhibited. In an attempt to develop more effective therapeutic strategies, the scientific interest has been directed toward methods down-modulating the immune mechanisms that initiate and maintain the allergic cascade. Today, the only widely used disease-modifying form of allergy treatment is the specific immunotherapy with allergen extracts. More recently the use of anti-IgE has been approved for patients with allergic asthma. Other immunomodulatory methods being currently explored are the administration of microbial adjuvants that inhibit Th2 reactivity and the design of molecules that interrupt the activity of key allergic cytokines, chemokines, or other Th2 effector mediators.


Sujet(s)
Hypersensibilité/immunologie , Hypersensibilité/thérapie , Facteurs immunologiques/usage thérapeutique , Immunothérapie/tendances , Neuro-immunomodulation/immunologie , Animaux , Humains , Immunoglobuline E/immunologie , Facteurs immunologiques/immunologie , Lymphocytes T/immunologie
8.
J Clin Invest ; 113(4): 619-27, 2004 Feb.
Article de Anglais | MEDLINE | ID: mdl-14966571

RÉSUMÉ

Glucocorticoids have potent immunosuppressive properties, but their effects are often modulated by the conditions prevailing in the local immune milieu. In this study we determined whether the action of glucocorticoids is influenced by the degree of signaling during T cell activation. We found that dexamethasone (Dex) effectively suppressed T cell receptor-induced (TCR-induced) proliferation of naive CD4+ T cells, through a mechanism involving downregulation of c-Fos expression and inhibition of activator protein-1 (AP-1), nuclear factor of activated T cells (NF-AT), and NF-kappaB transcriptional activity. However, enhancement of TCR signaling by CD28- or IL-2-mediated costimulation abrogated the suppressive effect of Dex on c-Fos expression and AP-1 function and restored cellular proliferation. The amount of signaling through the MAPK pathway was critical in determining the effect of Dex on T cell activation. In particular, costimulatory signaling via MAPK kinase (MEK) and extracellular signal-regulated kinase (ERK) was essential for the development of T cell resistance to Dex. Selective blockade of MEK/ERK signal transduction abolished the costimulation-induced resistance. In contrast, transmission of IL-2 signals via STAT5 and CD28 signals via NF-kappaB remained inhibited by Dex. These results imply that the immune system, by regulating the degree of local costimulation through MEK/ERK, can modify the effect of glucocorticoids on T cells. Moreover, these findings suggest that MAPK inhibitors may offer a therapeutic solution for glucocorticoid resistance.


Sujet(s)
Lymphocytes T CD4+/effets des médicaments et des substances chimiques , Lymphocytes T CD4+/métabolisme , Glucocorticoïdes/pharmacologie , Système de signalisation des MAP kinases/physiologie , Protéines de lait , Mitogen-Activated Protein Kinase Kinases/métabolisme , Mitogen-Activated Protein Kinases/métabolisme , Animaux , Antigène CD28/immunologie , Antigène CD28/métabolisme , Antigènes CD3/immunologie , Antigènes CD3/métabolisme , Lymphocytes T CD4+/cytologie , Cellules cultivées , Protéines de liaison à l'ADN/métabolisme , Dexaméthasone/métabolisme , Dexaméthasone/pharmacologie , Activation enzymatique , Glucocorticoïdes/métabolisme , Humains , Interleukine-2/immunologie , Interleukine-2/métabolisme , JNK Mitogen-Activated Protein Kinases , Activation des lymphocytes , Souris , Souris de lignée BALB C , Facteur de transcription NF-kappa B/métabolisme , Facteur de transcription STAT-5 , Transactivateurs/métabolisme , Facteur de transcription AP-1/métabolisme
9.
Int Immunol ; 14(6): 659-67, 2002 Jun.
Article de Anglais | MEDLINE | ID: mdl-12039917

RÉSUMÉ

Respiratory exposure to allergen induces the development of allergen-specific CD4(+) T cell tolerance that effectively protects against the development of allergic-sensitization and T(h)2-biased immunity. The establishment of T cell unresponsiveness to aeroallergens is an active process preceded by a transient phase of T cell activation that requires T cell co-stimulation and is critically influenced by the antigen-presenting cell type. In this study we examined the role of B cells in the development of respiratory tolerance following intranasal (i.n.) exposure to a prototypic protein antigen. We found that respiratory exposure of BCR-transgenic (Tg) mice to minute quantities of cognate antigen effectively induced T cell unresponsiveness, indicating that antigen presentation by antigen-specific B cells greatly enhanced the development of respiratory tolerance. In contrast, respiratory T cell unresponsiveness could not be induced in B cell-deficient JHD mice exposed to i.n. antigen, although T cell tolerance developed in JHD mice reconstituted with B cells, suggesting that B cells are required for the induction of respiratory T cell tolerance. Respiratory exposure of BCR-Tg mice to cognate antigen induced activation of antigen-specific T cells and partial activation of antigen-specific B cells, as demonstrated by enhanced expression by B cells of class II MHC and B7 molecules but lack of antibody secretion. Our data indicate that B cells critically influence the immune response to inhaled allergens and are required for the development of allergen-specific T cell unresponsiveness induced by respiratory allergen.


Sujet(s)
Allergènes/administration et posologie , Lymphocytes B/immunologie , Tolérance immunitaire , Lymphocytes T/immunologie , Administration par voie nasale , Animaux , Production d'anticorps , Lymphocytes T CD4+/immunologie , Immunité muqueuse , Activation des lymphocytes , Souris , Souris de lignée BALB C , Souris transgéniques , Lysozyme/administration et posologie , Lysozyme/immunologie , Ovalbumine/administration et posologie , Ovalbumine/immunologie , Récepteurs pour l'antigène des lymphocytes B/génétique , Muqueuse respiratoire/immunologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE