Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 28
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Cell ; 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38959890

RÉSUMÉ

Hypothalamic neural circuits regulate instinctive behaviors such as food seeking, the fight/flight response, socialization, and maternal care. Here, we identified microdeletions on chromosome Xq23 disrupting the brain-expressed transient receptor potential (TRP) channel 5 (TRPC5). This family of channels detects sensory stimuli and converts them into electrical signals interpretable by the brain. Male TRPC5 deletion carriers exhibited food seeking, obesity, anxiety, and autism, which were recapitulated in knockin male mice harboring a human loss-of-function TRPC5 mutation. Women carrying TRPC5 deletions had severe postpartum depression. As mothers, female knockin mice exhibited anhedonia and depression-like behavior with impaired care of offspring. Deletion of Trpc5 from oxytocin neurons in the hypothalamic paraventricular nucleus caused obesity in both sexes and postpartum depressive behavior in females, while Trpc5 overexpression in oxytocin neurons in knock-in mice reversed these phenotypes. We demonstrate that TRPC5 plays a pivotal role in mediating innate human behaviors fundamental to survival, including food seeking and maternal care.

2.
Sci Adv ; 10(26): eadl2675, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38941473

RÉSUMÉ

Declined memory is a hallmark of Alzheimer's disease (AD). Experiments in rodents and human postmortem studies suggest that serotonin (5-hydroxytryptamine, 5-HT) plays a role in memory, but the underlying mechanisms are unknown. Here, we investigate the role of 5-HT 2C receptor (5-HT2CR) in regulating memory. Transgenic mice expressing a humanized HTR2C mutation exhibit impaired plasticity of hippocampal ventral CA1 (vCA1) neurons and reduced memory. Further, 5-HT neurons project to and synapse onto vCA1 neurons. Disruption of 5-HT synthesis in vCA1-projecting neurons or deletion of 5-HT2CRs in the vCA1 impairs neural plasticity and memory. We show that a selective 5-HT2CR agonist, lorcaserin, improves synaptic plasticity and memory in an AD mouse model. Cumulatively, we demonstrate that hippocampal 5-HT2CR signaling regulates memory, which may inform the use of 5-HT2CR agonists in the treatment of dementia.


Sujet(s)
Maladie d'Alzheimer , Mémoire , Souris transgéniques , Plasticité neuronale , Récepteur de la sérotonine de type 5-HT2C , Animaux , Humains , Récepteur de la sérotonine de type 5-HT2C/métabolisme , Récepteur de la sérotonine de type 5-HT2C/génétique , Mémoire/effets des médicaments et des substances chimiques , Mémoire/physiologie , Souris , Plasticité neuronale/effets des médicaments et des substances chimiques , Maladie d'Alzheimer/métabolisme , Hippocampe/métabolisme , Hippocampe/effets des médicaments et des substances chimiques , Sérotonine/métabolisme , Modèles animaux de maladie humaine , Région CA1 de l'hippocampe/métabolisme , Région CA1 de l'hippocampe/effets des médicaments et des substances chimiques , Neurones/métabolisme , Neurones/effets des médicaments et des substances chimiques , Agonistes des récepteurs 5-HT2 de la sérotonine/pharmacologie
3.
J Neurosci ; 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38897723

RÉSUMÉ

Light plays an essential role in a variety of physiological processes, including vision, mood, and glucose homeostasis. However, the intricate relationship between light and an animal's feeding behavior has remained elusive. Here, we found that light exposure suppresses food intake, whereas darkness amplifies it in male mice. Interestingly, this phenomenon extends its reach to diurnal male Nile grass rats and healthy humans. We further show that lateral habenula (LHb) neurons in mice respond to light exposure, which in turn activates 5-HT neurons in the dorsal Raphe nucleus (DRN). Activation of the LHb → 5-HTDRN circuit in mice blunts darkness-induced hyperphagia, while inhibition of the circuit prevents light-induced anorexia. Together, we discovered a light responsive neural circuit that relays the environmental light signals to regulate feeding behavior in mice.Significance statement Feeding behavior is influenced by a myriad of sensory inputs, but the impact of light exposure on feeding regulation has remained enigmatic. Here, we showed that light exposure diminishes food intake across both nocturnal and diurnal species. Delving deeper, our findings revealed that the LHb → 5-HTDRN neural circuit plays a pivotal role in mediating light-induced anorexia in mice. These discoveries not only enhance our comprehension of the intricate neuronal mechanisms governing feeding in response to light but also offer insights for developing innovative strategies to address obesity and eating disorders.

4.
bioRxiv ; 2024 Apr 29.
Article de Anglais | MEDLINE | ID: mdl-38746314

RÉSUMÉ

Obesity is a growing global health epidemic with limited effective therapeutics. Serotonin (5-HT) is one major neurotransmitter which remains an excellent target for new weight-loss therapies, but there remains a gap in knowledge on the mechanisms involved in 5-HT produced in the dorsal Raphe nucleus (DRN) and its involvement in meal initiation. Using a closed-loop optogenetic feeding paradigm, we showed that the 5-HTDRN→arcuate nucleus (ARH) circuit plays an important role in regulating meal initiation. Incorporating electrophysiology and ChannelRhodopsin-2-Assisted Circuit Mapping, we demonstrated that 5-HTDRN neurons receive inhibitory input partially from GABAergic neurons in the DRN, and the 5-HT response to GABAergic inputs can be enhanced by hunger. Additionally, deletion of the GABAA receptor subunit in 5-HT neurons inhibits meal initiation with no effect on the satiation process. Finally, we identified the instrumental role of dopaminergic inputs via dopamine receptor D2 in 5-HTDRN neurons in enhancing the response to GABA-induced feeding. Thus, our results indicate that 5-HTDRN neurons are inhibited by synergistic inhibitory actions of GABA and dopamine, which allows for the initiation of a meal.

5.
Neuropharmacology ; 251: 109919, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38548221

RÉSUMÉ

Ghrelin and its mimetics have been shown to reduce cisplatin-induced emesis in preclinical studies using ferrets and shrews. This study investigated the effectiveness of ghrelin and des-acyl ghrelin (DAG) in antagonizing cisplatin-induced emesis and physiological changes indicative of nausea in Suncus murinus. Animals implanted with radiotelemetry devices were administered ghrelin (0.2, 1.0, and 5.0 µg/day), DAG (0.2, 1.0, and 5.0 µg/day), or saline (14 µL/day) intracerebroventricularly 4 days before and 3 days after treatment with cisplatin (30 mg/kg). At the end, the anti-apoptotic potentials of ghrelin and DAG were assessed by measuring Bax expression and cytochrome C activity. Neurotransmitter changes in the brain were evaluated using liquid chromatography-mass spectrometry analysis. Ghrelin and DAG reduced cisplatin-induced emesis in the delayed (24-72 h) but not the acute phase (0-24 h) of emesis. Ghrelin also partially reversed the inhibitory effects of cisplatin on food intake without affecting gastrointestinal myoelectrical activity or causing hypothermia; however, ghrelin or DAG did not prevent these effects. Ghrelin and DAG could attenuate the cisplatin-induced upregulation of Bax and cytochrome C in the ileum. Cisplatin dysregulated neurotransmitter levels in the frontal cortex, amygdala, thalamus, hypothalamus, and brainstem, and this was partially restored by low doses of ghrelin and DAG. Our findings suggest that ghrelin and DAG exhibit protective effects against cisplatin-induced delayed emesis. The underlying antiemetic mechanism may involve GHSR and/or unspecified pathways that modulate the neurotransmitters involved in emesis control in the brain and an action to attenuate apoptosis in the gastrointestinal tract.


Sujet(s)
Antiémétiques , Antinéoplasiques , Animaux , Cisplatine/toxicité , Ghréline/pharmacologie , Ghréline/usage thérapeutique , Vomissement/induit chimiquement , Vomissement/traitement médicamenteux , Vomissement/prévention et contrôle , Cytochromes c , Protéine Bax , Furets , Nausée/induit chimiquement , Nausée/traitement médicamenteux , Nausée/prévention et contrôle , Antiémétiques/pharmacologie , Antiémétiques/usage thérapeutique , Antinéoplasiques/toxicité , Agents neuromédiateurs/effets indésirables
6.
J Clin Invest ; 133(14)2023 07 17.
Article de Anglais | MEDLINE | ID: mdl-37261917

RÉSUMÉ

Glucose is the basic fuel essential for maintenance of viability and functionality of all cells. However, some neurons - namely, glucose-inhibited (GI) neurons - paradoxically increase their firing activity in low-glucose conditions and decrease that activity in high-glucose conditions. The ionic mechanisms mediating electric responses of GI neurons to glucose fluctuations remain unclear. Here, we showed that currents mediated by the anoctamin 4 (Ano4) channel are only detected in GI neurons in the ventromedial hypothalamic nucleus (VMH) and are functionally required for their activation in response to low glucose. Genetic disruption of the Ano4 gene in VMH neurons reduced blood glucose and impaired counterregulatory responses during hypoglycemia in mice. Activation of VMHAno4 neurons increased food intake and blood glucose, while chronic inhibition of VMHAno4 neurons ameliorated hyperglycemia in a type 1 diabetic mouse model. Finally, we showed that VMHAno4 neurons represent a unique orexigenic VMH population and transmit a positive valence, while stimulation of neurons that do not express Ano4 in the VMH (VMHnon-Ano4) suppress feeding and transmit a negative valence. Together, our results indicate that the Ano4 channel and VMHAno4 neurons are potential therapeutic targets for human diseases with abnormal feeding behavior or glucose imbalance.


Sujet(s)
Glucose , Hypoglycémie , Animaux , Souris , Anoctamines , Glycémie , Glucose/pharmacologie , Hypoglycémie/génétique , Hypothalamus/métabolisme , Neurones/métabolisme , Noyau ventromédial de l'hypothalamus/métabolisme
7.
Nat Metab ; 5(1): 147-164, 2023 01.
Article de Anglais | MEDLINE | ID: mdl-36593271

RÉSUMÉ

Leptin acts on hypothalamic neurons expressing agouti-related protein (AgRP) or pro-opiomelanocortin (POMC) to suppress appetite and increase energy expenditure, but the intracellular mechanisms that modulate central leptin signalling are not fully understood. Here we show that growth factor receptor-bound protein 10 (Grb10), an adaptor protein that binds to the insulin receptor and negatively regulates its signalling pathway, can interact with the leptin receptor and enhance leptin signalling. Ablation of Grb10 in AgRP neurons promotes weight gain, while overexpression of Grb10 in AgRP neurons reduces body weight in male and female mice. In parallel, deletion or overexpression of Grb10 in POMC neurons exacerbates or attenuates diet-induced obesity, respectively. Consistent with its role in leptin signalling, Grb10 in AgRP and POMC neurons enhances the anorexic and weight-reducing actions of leptin. Grb10 also exaggerates the inhibitory effects of leptin on AgRP neurons via ATP-sensitive potassium channel-mediated currents while facilitating the excitatory drive of leptin on POMC neurons through transient receptor potential channels. Our study identifies Grb10 as a potent leptin sensitizer that contributes to the maintenance of energy homeostasis by enhancing the response of AgRP and POMC neurons to leptin.


Sujet(s)
Leptine , Pro-opiomélanocortine , Souris , Mâle , Femelle , Animaux , Protéine apparentée à Agouti/métabolisme , Leptine/métabolisme , Pro-opiomélanocortine/métabolisme , Protéine adaptatrice GRB10/métabolisme , Perte de poids
8.
Nat Med ; 28(12): 2537-2546, 2022 12.
Article de Anglais | MEDLINE | ID: mdl-36536256

RÉSUMÉ

Serotonin reuptake inhibitors and receptor agonists are used to treat obesity, anxiety and depression. Here we studied the role of the serotonin 2C receptor (5-HT2CR) in weight regulation and behavior. Using exome sequencing of 2,548 people with severe obesity and 1,117 control individuals without obesity, we identified 13 rare variants in the gene encoding 5-HT2CR (HTR2C) in 19 unrelated people (3 males and 16 females). Eleven variants caused a loss of function in HEK293 cells. All people who carried variants had hyperphagia and some degree of maladaptive behavior. Knock-in male mice harboring a human loss-of-function HTR2C variant developed obesity and reduced social exploratory behavior; female mice heterozygous for the same variant showed similar deficits with reduced severity. Using the 5-HT2CR agonist lorcaserin, we found that depolarization of appetite-suppressing proopiomelanocortin neurons was impaired in knock-in mice. In conclusion, we demonstrate that 5-HT2CR is involved in the regulation of human appetite, weight and behavior. Our findings suggest that melanocortin receptor agonists might be effective in treating severe obesity in individuals carrying HTR2C variants. We suggest that HTR2C should be included in diagnostic gene panels for severe childhood-onset obesity.


Sujet(s)
Obésité morbide , Récepteur de la sérotonine de type 5-HT2C , Animaux , Enfant , Femelle , Humains , Mâle , Souris , Cellules HEK293 , Obésité/génétique , Récepteur de la sérotonine de type 5-HT2C/génétique , Sérotonine , Agonistes des récepteurs 5-HT2 de la sérotonine/pharmacologie , Adaptation psychologique
9.
Cell Biosci ; 12(1): 170, 2022 Oct 09.
Article de Anglais | MEDLINE | ID: mdl-36210455

RÉSUMÉ

BACKGROUND: Pro-opiomelanocortin (POMC) neurons play a sexually dimorphic role in body weight and glucose balance. However, the mechanisms for the sex differences in POMC neuron functions are not fully understood. RESULTS: We detected small conductance calcium-activated potassium (SK) current in POMC neurons. Secondary analysis of published single-cell RNA-Seq data showed that POMC neurons abundantly express SK3, one SK channel subunit. To test whether SK3 in POMC neurons regulates POMC neuron functions on energy and glucose homeostasis, we used a Cre-loxP strategy to delete SK3 specifically from mature POMC neurons. POMC-specific deletion of SK3 did not affect body weight in either male or female mice. Interestingly, male mutant mice showed not only decreased food intake but also decreased physical activity, resulting in unchanged body weight. Further, POMC-specific SK3 deficiency impaired glucose balance specifically in female mice but not in male mice. Finally, no sex differences were detected in the expression of SK3 and SK current in total POMC neurons. However, we found higher SK current but lower SK3 positive neuron population in male POMC neurons co-expressing estrogen receptor α (ERα) compared to that in females. CONCLUSION: These results revealed a sexually dimorphic role of SK3 in POMC neurons in both energy and glucose homeostasis independent of body weight control, which was associated with the sex difference of SK current in a subpopulation of POMC + ERα + neurons.

10.
Front Endocrinol (Lausanne) ; 13: 889122, 2022.
Article de Anglais | MEDLINE | ID: mdl-36120438

RÉSUMÉ

Pro-opiomelanocortin (POMC) neurons are important for the regulation of body weight and glucose balance. The inhibitory tone to POMC neurons is mediated primarily by the GABA receptors. However, the detailed mechanisms and functions of GABA receptors are not well understood. The α5 subunit of GABAA receptor, Gabra5, is reported to regulate feeding, and we found that Gabra5 is highly expressed in POMC neurons. To explore the function of Gabra5 in POMC neurons, we knocked down Gabra5 specifically from mature hypothalamic POMC neurons using the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 strategy. This POMC-specific knock-down of Gabra5 did not affect body weight or food intake in either male or female mice. Interestingly, the loss of Gabra5 caused significant increases in the firing frequency and resting membrane potential, and a decrease in the amplitude of the miniature inhibitory postsynaptic current (mIPSC) in male POMC neurons. However, the loss of Gabra5 only modestly decreased the frequency of mIPSC in female POMC neurons. Consistently, POMC-specific knock-down of Gabra5 significantly improved glucose tolerance in male mice but not in female mice. These results revealed a sexually dimorphic role of Gabra5 in POMC neuron activity and glucose balance, independent of body weight control.


Sujet(s)
Glucose , Pro-opiomélanocortine , Animaux , Poids , Femelle , Mâle , Souris , Souris transgéniques , Neurones/métabolisme , Pro-opiomélanocortine/génétique , Récepteurs GABA-A
12.
Cell Biosci ; 12(1): 71, 2022 May 26.
Article de Anglais | MEDLINE | ID: mdl-35619170

RÉSUMÉ

The brain, particularly the ventromedial hypothalamic nucleus (VMH), has been long known for its involvement in glucose sensing and whole-body glucose homeostasis. However, it is still not fully understood how the brain detects and responds to the changes in the circulating glucose levels, as well as brain-body coordinated control of glucose homeostasis. In this review, we address the growing evidence implicating the brain in glucose homeostasis, especially in the contexts of hypoglycemia and diabetes. In addition to neurons, we emphasize the potential roles played by non-neuronal cells, as well as extracellular matrix in the hypothalamus in whole-body glucose homeostasis. Further, we review the ionic mechanisms by which glucose-sensing neurons sense fluctuations of ambient glucose levels. We also introduce the significant implications of heterogeneous neurons in the VMH upon glucose sensing and whole-body glucose homeostasis, in which sex difference is also addressed. Meanwhile, research gaps have also been identified, which necessities further mechanistic studies in future.

13.
Nat Neurosci ; 25(5): 646-658, 2022 05.
Article de Anglais | MEDLINE | ID: mdl-35501380

RÉSUMÉ

Midbrain dopamine (DA) and serotonin (5-HT) neurons regulate motivated behaviors, including feeding, but less is known about how these circuits may interact. In this study, we found that DA neurons in the mouse ventral tegmental area bidirectionally regulate the activity of 5-HT neurons in the dorsal raphe nucleus (DRN), with weaker stimulation causing DRD2-dependent inhibition and overeating, while stronger stimulation causing DRD1-dependent activation and anorexia. Furthermore, in the activity-based anorexia (ABA) paradigm, which is a mouse model mimicking some clinical features of human anorexia nervosa (AN), we observed a DRD2 to DRD1 shift of DA neurotransmission on 5-HTDRN neurons, which causes constant activation of these neurons and contributes to AN-like behaviors. Finally, we found that systemic administration of a DRD1 antagonist can prevent anorexia and weight loss in ABA. Our results revealed regulation of feeding behavior by stimulation strength-dependent interactions between DA and 5-HT neurons, which may contribute to the pathophysiology of AN.


Sujet(s)
Dopamine , Sérotonine , Animaux , Anorexie , Neurones dopaminergiques , Mésencéphale , Souris , Neurones/physiologie
14.
Front Pharmacol ; 13: 750507, 2022.
Article de Anglais | MEDLINE | ID: mdl-35418856

RÉSUMÉ

Since the first clinical trials conducted after World War II, chemotherapeutic drugs have been extensively used in the clinic as the main cancer treatment either alone or as an adjuvant therapy before and after surgery. Although the use of chemotherapeutic drugs improved the survival of cancer patients, these drugs are notorious for causing many severe side effects that significantly reduce the efficacy of anti-cancer treatment and patients' quality of life. Many widely used chemotherapy drugs including platinum-based agents, taxanes, vinca alkaloids, proteasome inhibitors, and thalidomide analogs may cause direct and indirect neurotoxicity. In this review we discuss the main effects of chemotherapy on the peripheral and central nervous systems, including neuropathic pain, chemobrain, enteric neuropathy, as well as nausea and emesis. Understanding mechanisms involved in chemotherapy-induced neurotoxicity is crucial for the development of drugs that can protect the nervous system, reduce symptoms experienced by millions of patients, and improve the outcome of the treatment and patients' quality of life.

15.
Front Pharmacol ; 12: 746053, 2021.
Article de Anglais | MEDLINE | ID: mdl-34925008

RÉSUMÉ

Purpose: Cancer patients receiving cisplatin therapy often experience side-effects such as nausea and emesis, but current anti-emetic regimens are suboptimal. Thus, to enable the development of efficacious anti-emetic treatments, the mechanisms of cisplatin-induced emesis must be determined. We therefore investigated these mechanisms in Suncus murinus, an insectivore that is capable of vomiting. Methods: We used a microelectrode array system to examine the effect of cisplatin on the spatiotemporal properties of slow waves in stomach antrum, duodenum, ileum and colon tissues isolated from S. murinus. In addition, we used a multi-wire radiotelemetry system to record conscious animals' gastric myoelectric activity, core body temperature, blood pressure (BP) and heart rate viability over 96-h periods. Furthermore, we used whole-body plethysmography to simultaneously monitor animals' respiratory activity. At the end of in vivo experiments, the stomach antrum was collected and immunohistochemistry was performed to identify c-Kit and cluster of differentiation 45 (CD45)-positive cells. Results: Our acute in vitro studies revealed that cisplatin (1-10 µM) treatment had acute region-dependent effects on pacemaking activity along the gastrointestinal tract, such that the stomach and colon responded oppositely to the duodenum and ileum. S. murinus treated with cisplatin for 90 min had a significantly lower dominant frequency (DF) in the ileum and a longer waveform period in the ileum and colon. Our 96-h recordings showed that cisplatin inhibited food and water intake and caused weight loss during the early and delayed phases. Moreover, cisplatin decreased the DF, increased the percentage power of bradygastria, and evoked a hypothermic response during the acute and delayed phases. Reductions in BP and respiratory rate were also observed. Finally, we demonstrated that treatment with cisplatin caused inflammation in the antrum of the stomach and reduced the density of the interstitial cells of Cajal (ICC). Conclusion: These studies indicate that cisplatin treatment of S. murinus disrupted ICC networking and viability and also affected general homeostatic mechanisms of the cardiovascular system and gastrointestinal tract. The effect on the gastrointestinal tract appeared to be region-specific. Further investigations are required to comprehensively understand these mechanistic effects of cisplatin and their relationship to emesis.

16.
J Vis Exp ; (176)2021 10 07.
Article de Anglais | MEDLINE | ID: mdl-34694284

RÉSUMÉ

Immunohistochemical staining of mouse brains is a routine technique commonly used in neuroscience to investigate central mechanisms underlying the regulation of energy metabolism and other neurobiological processes. However, the quality, reliability, and reproducibility of brain histology results may vary among laboratories. For each staining experiment, it is necessary to optimize the key procedures based on differences in species, tissues, targeted proteins, and the working conditions of the reagents. This paper demonstrates a reliable workflow in detail, including intra-aortic perfusion, brain sectioning, free-floating immunostaining, tissue mounting, and imaging, which can be followed easily by researchers in this field. Also discussed are how to modify these procedures to satisfy the individual needs of researchers. To illustrate the reliability and efficiency of this protocol, perineuronal nets were stained with biotin-labeled Wisteria florbunda agglutinin (WFA) and arginine vasopressin (AVP) with an anti-AVP antibody in the mouse brain. Finally, the critical details for the entire procedure have been addressed, and the advantages of this protocol compared to those of other protocols. Taken together, this paper presents an optimized protocol for free-floating immunostaining of mouse brain tissue. Following this protocol makes this process easier for both junior and senior scientists to improve the quality, reliability, and reproducibility of immunostaining studies.


Sujet(s)
Encéphale , Matrice extracellulaire , Animaux , Encéphale/métabolisme , Matrice extracellulaire/métabolisme , Souris , Reproductibilité des résultats , Coloration et marquage
17.
Front Physiol ; 12: 714104, 2021.
Article de Anglais | MEDLINE | ID: mdl-34393830

RÉSUMÉ

Perineuronal nets (PNNs) are widely present in the hypothalamus, and are thought to provide physical protection and ion buffering for neurons and regulate their synaptic plasticity and intracellular signaling. Recent evidence indicates that PNNs in the mediobasal hypothalamus play an important role in the regulation of glucose homeostasis. However, whether and how hypothalamic PNNs are regulated are not fully understood. In the present study, we examined whether PNNs in various hypothalamic regions in mice can be regulated by sex, gonadal hormones, dietary interventions, or their interactions. We demonstrated that gonadal hormones are required to maintain normal PNNs in the arcuate nucleus of hypothalamus in both male and female mice. In addition, PNNs in the terete hypothalamic nucleus display a sexual dimorphism with females higher than males, and high-fat diet feeding increases terete PNNs only in female mice but not in male mice. On the other hand, PNNs in other hypothalamic regions are not influenced by sex, gonadal hormones or dietary interventions. In summary, we demonstrated that hypothalamic PNNs are regulated in a region-specific manner and these results provide a framework to further investigate the potential functions of PNNs in regulating energy/glucose homeostasis at the interplay of sex, gonadal hormones and diets.

18.
J Neurosci ; 41(26): 5734-5746, 2021 06 30.
Article de Anglais | MEDLINE | ID: mdl-34031163

RÉSUMÉ

Obesity is a serious global health problem because of its increasing prevalence and comorbidities, but its treatments are limited. The serotonin 2C receptor (5-HT2CR), a G-protein-coupled receptor, activates proopiomelanocortin (POMC) neurons in the arcuate nucleus of hypothalamus (ARH) to reduce appetite and weight gain. However, several 5-HT analogs targeting this receptor, e.g., lorcaserin (Lor), suffer from diminished efficacy to reduce weight after prolonged administration. Here, we show that barbadin (Bar), a novel ß-arrestin/ß2-adaptin inhibitor, can prevent 5-HT2CR internalization in cells and potentiate long-term effects of Lor to reduce appetite and body weight in male mice. Mechanistically, we demonstrate that Bar co-treatment can effectively maintain the sensitivity of the 5-HT2CR in POMCARH neurons, despite prolonged Lor exposure, thereby allowing these neurons to be activated through opening the transient receptor potential cation (TRPC) channels. Thus, our results prove the concept that inhibition of 5-HT2CR desensitization can be a valid strategy to improve the long-term weight loss effects of Lor or other 5-HT2CR agonists, and also provide an intellectual framework to develop effective long-term management of weight by targeting 5-HT2CR desensitization.SIGNIFICANCE STATEMENT By demonstrating that the combination of barbadin (Bar) with a G-protein-coupled receptor (GPCR) agonist can provide prolonged weight-lowering benefits in a preclinical setting, our work should call for additional efforts to validate Bar as a safe and effective medicine or to use Bar as a lead compound to develop more suitable compounds for obesity treatment. These results prove the concept that inhibition of serotonin 2C receptor (5-HT2CR) desensitization can be a valid strategy to improve the long-term weight loss effects of lorcaserin (Lor) or other 5-HT2CR agonists. Since GPCRs represent a major category as therapeutic targets for various human diseases and desensitization of GPCRs is a common issue, our work may provide a conceptual framework to enhance effects of a broad range of GPCR medicines.


Sujet(s)
Benzazépines/pharmacologie , Neurones/effets des médicaments et des substances chimiques , Pyrimidines/pharmacologie , Récepteur de la sérotonine de type 5-HT2C/métabolisme , Perte de poids/effets des médicaments et des substances chimiques , Animaux , Appétit/effets des médicaments et des substances chimiques , Noyau arqué de l'hypothalamus/effets des médicaments et des substances chimiques , Noyau arqué de l'hypothalamus/métabolisme , Mâle , Souris , Souris de lignée C57BL , Pro-opiomélanocortine/métabolisme , Récepteur de la sérotonine de type 5-HT2C/effets des médicaments et des substances chimiques , Temps
19.
Endocrinology ; 162(1)2021 01 01.
Article de Anglais | MEDLINE | ID: mdl-33034617

RÉSUMÉ

AbstractCentral 5-hydroxytryptamine (5-HT), which is primarily synthesized by tryptophan hydroxylase 2 (TPH2) in the dorsal Raphe nuclei (DRN), plays a pivotal role in the regulation of food intake and body weight. However, the physiological functions of TPH2 on energy balance have not been consistently demonstrated. Here we systematically investigated the effects of TPH2 on energy homeostasis in adult male and female mice. We found that the DRN harbors a similar amount of TPH2+ cells in control male and female mice. Adult-onset TPH2 deletion in the DRN promotes hyperphagia and body weight gain only in male mice, but not in female mice. Ablation of TPH2 reduces hypothalamic pro-opiomelanocortin (POMC) neuronal activity robustly in males, but only to a modest degree in females. Deprivation of estrogen by ovariectomy (OVX) causes comparable food intake and weight gain in female control and DRN-specific TPH2 knockout mice. Nevertheless, disruption of TPH2 blunts the anorexigenic effects of exogenous estradiol (E2) and abolishes E2-induced activation of POMC neurons in OVX female mice, indicating that TPH2 is indispensable for E2 to activate POMC neurons and to suppress appetite. Together, our study revealed that TPH2 in the DRN contributes to energy balance regulation in a sexually dimorphic manner.


Sujet(s)
Noyau dorsal du raphé/métabolisme , Métabolisme énergétique/physiologie , Tryptophane 5-monooxygenase/métabolisme , Prise de poids/génétique , Animaux , Oestradiol/pharmacologie , Femelle , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes/physiologie , Gènes fos/génétique , Gènes fos/physiologie , Mâle , Souris , Souris knockout , Neurones/métabolisme , Ovariectomie , Facteurs sexuels , Tryptophane 5-monooxygenase/génétique , Prise de poids/physiologie
20.
Eur J Pharmacol ; 888: 173528, 2020 Dec 05.
Article de Anglais | MEDLINE | ID: mdl-32871177

RÉSUMÉ

GLP-1 receptor agonists are used for the treatment of type 2 diabetes but they may reduce appetite and cause nausea and emesis. We investigated if GLP-1 (7-36) amide can modulate glucose homoeostasis, emesis and feeding via an exendin (9-39)-sensitive mechanism in Suncus murinus. The effect of GLP-1 (7-36) amide on glucose homeostasis was examined using an intraperitoneal glucose tolerance test. In conscious fasted animals, food and water consumption and behavior were measured for 1 h following drug administration. c-Fos expression in the brain was measured using immunohistochemistry. GLP-1 (7-36) amide reduced blood glucose levels dose-dependently. Exendin (9-39) did not modify blood glucose levels but suppressed the glucose-lowering effect of GLP-1 (7-36) amide. GLP-1 (7-36) amide inhibited food and water intake, induced emesis and elevated c-Fos expression in the brainstem and hypothalamic nuclei in the brain. Exendin (9-39) antagonised the inhibition of food and water intake and emesis induced by GLP-1 (7-36) amide and the effects on c-Fos expression in the hypothalamus and brainstem, excepting for the bed nucleus of the stria terminalis. These data suggest that the action of GLP-1 (7-36) amide to modulate blood glucose, suppress food and water intake and induce emesis involve GLP-1 receptors in the hypothalamus and brainstem.


Sujet(s)
Glycémie/métabolisme , Comportement alimentaire/physiologie , Glucagon-like peptide 1/administration et posologie , Récepteur du peptide-1 similaire au glucagon/métabolisme , Homéostasie/physiologie , Fragments peptidiques/administration et posologie , Vomissement/métabolisme , Animaux , Glycémie/effets des médicaments et des substances chimiques , Relation dose-effet des médicaments , Comportement alimentaire/effets des médicaments et des substances chimiques , Récepteur du peptide-1 similaire au glucagon/agonistes , Homéostasie/effets des médicaments et des substances chimiques , Injections ventriculaires , Mâle , Musaraignes
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...