Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 370
Filtrer
1.
PLoS Comput Biol ; 20(7): e1011570, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38954728

RÉSUMÉ

The classification of B cell lymphomas-mainly based on light microscopy evaluation by a pathologist-requires many years of training. Since the B cell receptor (BCR) of the lymphoma clonotype and the microenvironmental immune architecture are important features discriminating different lymphoma subsets, we asked whether BCR repertoire next-generation sequencing (NGS) of lymphoma-infiltrated tissues in conjunction with machine learning algorithms could have diagnostic utility in the subclassification of these cancers. We trained a random forest and a linear classifier via logistic regression based on patterns of clonal distribution, VDJ gene usage and physico-chemical properties of the top-n most frequently represented clonotypes in the BCR repertoires of 620 paradigmatic lymphoma samples-nodular lymphocyte predominant B cell lymphoma (NLPBL), diffuse large B cell lymphoma (DLBCL) and chronic lymphocytic leukemia (CLL)-alongside with 291 control samples. With regard to DLBCL and CLL, the models demonstrated optimal performance when utilizing only the most prevalent clonotype for classification, while in NLPBL-that has a dominant background of non-malignant bystander cells-a broader array of clonotypes enhanced model accuracy. Surprisingly, the straightforward logistic regression model performed best in this seemingly complex classification problem, suggesting linear separability in our chosen dimensions. It achieved a weighted F1-score of 0.84 on a test cohort including 125 samples from all three lymphoma entities and 58 samples from healthy individuals. Together, we provide proof-of-concept that at least the 3 studied lymphoma entities can be differentiated from each other using BCR repertoire NGS on lymphoma-infiltrated tissues by a trained machine learning model.


Sujet(s)
Apprentissage machine , Récepteurs pour l'antigène des lymphocytes B , Humains , Récepteurs pour l'antigène des lymphocytes B/génétique , Séquençage nucléotidique à haut débit/méthodes , Leucémie chronique lymphocytaire à cellules B/génétique , Leucémie chronique lymphocytaire à cellules B/immunologie , Biologie informatique/méthodes , Lymphome B/génétique , Lymphocytes B/métabolisme , Lymphocytes B/immunologie , Lymphome B diffus à grandes cellules/génétique , Lymphome B diffus à grandes cellules/anatomopathologie , Lymphome B diffus à grandes cellules/classification , Algorithmes
2.
Am J Surg Pathol ; 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38864239

RÉSUMÉ

Extranodal marginal zone lymphomas (eMZL) can occur in any organ and site of the body. Recent research has shown that they differ from organ to organ in terms of their mutational profile. In this study, we investigated a cohort of primary breast marginal zone lymphomas (PBMZL) to get a better insight into their morphologic and molecular profile. A cohort of 15 cases (14 female and 1 male) was characterized by immunohistochemistry (IHC) for 19 markers, fluorescence in situ hybridization (FISH), and high throughput sequencing (HTS) using a lymphoma panel comprising 172 genes. In addition, PCR for the specific detection of Borrelia spp. and metagenomics whole genome sequencing were performed for infectious agent profiling. Follicular colonization was observed in most cases, while lymphoepithelial lesions, though seen in many cases, were not striking. All 15 cases were negative for CD5, CD11c, and CD21 and positive for BCL2 and pan B-cell markers. There were no cases with BCL2, BCL10, IRF4, MALT1, or MYC translocation; only 1 had a BCL6 rearrangement. HTS highlighted TNFAIP3 (n=4), KMT2D (n=2), and SPEN (n=2) as the most frequently mutated genes. There were no Borrelia spp., and no other pathogens detected in our cohort. One patient had a clinical history of erythema chronicum migrans affecting the same breast. PBMZL is a mutation-driven disease rather than fusion-driven. It exhibits mutations in genes encoding components affecting the NF-κB pathway, chromatin modifier-encoding genes, and NOTCH pathway-related genes. Its mutational profile shares similarities with ocular adnexal and nodal MZL.

3.
Cell Rep ; 43(2): 113794, 2024 Feb 27.
Article de Anglais | MEDLINE | ID: mdl-38363677

RÉSUMÉ

Acute myeloid leukemia (AML) progression is influenced by immune suppression induced by leukemia cells. ZEB1, a critical transcription factor in epithelial-to-mesenchymal transition, demonstrates immune regulatory functions in AML. Silencing ZEB1 in leukemic cells reduces engraftment and extramedullary disease in immune-competent mice, activating CD8 T lymphocytes and limiting Th17 cell expansion. ZEB1 in AML cells directly promotes Th17 cell development that, in turn, creates a self-sustaining loop and a pro-invasive phenotype, favoring transforming growth factor ß (TGF-ß), interleukin-23 (IL-23), and SOCS2 gene transcription. In bone marrow biopsies from AML patients, immunohistochemistry shows a direct correlation between ZEB1 and Th17. Also, the analysis of ZEB1 expression in larger datasets identifies two distinct AML groups, ZEB1high and ZEB1low, each with specific immunological and molecular traits. ZEB1high patients exhibit increased IL-17, SOCS2, and TGF-ß pathways and a negative association with overall survival. This unveils ZEB1's dual role in AML, entwining pro-tumoral and immune regulatory capacities in AML blasts.


Sujet(s)
Leucémie aigüe myéloïde , Cellules Th17 , Animaux , Humains , Souris , Lymphocytes T CD8+ , Prolifération cellulaire , Facteur de croissance transformant bêta , Facteur de transcription Zeb1
5.
Pathobiology ; 91(2): 158-168, 2024.
Article de Anglais | MEDLINE | ID: mdl-37490884

RÉSUMÉ

BACKGROUND: Transcriptomic data on bronchoalveolar lavage (BAL) from COVID-19 patients are currently scarce. OBJECTIVES: This case series seeks to characterize the intra-alveolar immunopathology of COVID-19. METHOD: BALs were performed on 14 patients (5 COVID-19, of which 3 mild and 2 largely asymptomatic, 9 controls). Controls included asthma (n = 1), unremarkable BALs (n = 3), infections with respiratory syncytial virus (n = 1), influenza B (n = 1), and infections with other coronaviruses (n = 3). SARS-CoV-2 RNA load was measured by quantitative nucleic acid testing, while the detection of other pathogens was performed by immunofluorescence or multiplex NAT. RESULTS: Gene expression profiling showed 71 significantly downregulated and 5 upregulated transcripts in SARS-CoV-2-positive lavages versus controls. Downregulated transcripts included genes involved in macrophage development, polarization, and crosstalk (LGALS3, MARCO, ERG2, BTK, RAC1, CD83), and genes involved in chemokine signaling and immunometabolism (NUPR1, CEBPB, CEBPA, PECAM1, CCL18, PPARG, ALOX5, ALOX5AP). Upregulated transcripts featured genes involved in NK-T cell signaling (GZMA, GZMH, GNLY, PRF1, CD3G). Patients with mild COVID-19 showed a significant upregulation of genes involved in blood mononuclear cell/leukocyte function (G0S2, ANXA6, FCGR2B, ADORA3), coagulation (von Willebrand factor [VWF]), interferon response (IFRD1, IL12RB2), and a zinc metalloprotease elevated in asthma (CPA3) compared to asymptomatic cases. In-silico comparison of the 5 COVID-19 BAL cases to a published cohort of lethal COVID-19 showed a significant upregulation of "antigen processing and presentation" and "lysosome" pathways in lethal cases. CONCLUSIONS: These data underscore the heterogeneity of immune response in COVID-19. Further studies with a larger dataset are required to gain a better understanding of the hallmarks of SARS-CoV-2 immunological response.


Sujet(s)
Asthme , COVID-19 , Humains , COVID-19/génétique , SARS-CoV-2 , ARN viral , Lavage bronchoalvéolaire , Transcriptome
6.
Histopathology ; 84(3): 525-538, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-37965677

RÉSUMÉ

AIMS: Primary bone diffuse large B-cell lymphoma (PB-DLBCL) is not recognized as a separate entity by the current classification systems. Here we define and highlight its distinctive clinical presentation, morphology, phenotype, gene expression profile (GEP), and molecular genetics. METHODS: We collected 27 respective cases and investigated their phenotype, performed gDNA panel sequencing covering 172 genes, and carried out fluorescence in situ hybridization to evaluate MYC, BCL2, and BCL6 translocations. We attempted to genetically subclassify cases using the Two-step classifier and performed GEP for cell-of-origin subtyping and in silico comparison to uncover up- and downregulated genes as opposed to other DLBCL. RESULTS: Most cases (n = 22) were germinal centre B-cell-like (GCB) by immunohistochemistry and all by GEP. Additionally, PB-DLBCL had a mutational profile similar to follicular lymphoma and nodal GCB-DLBCL, with the exception of more frequent TP53 and B2M mutations. The GEP of PB-DLBCL was unique, and the frequency of BCL2 rearrangements was lower compared to nodal GCB-DLBCL. The Two-step classifier categorized eight of the cases as EZB, three as ST2, and one as MCD. CONCLUSION: This study comprehensively characterizes PB-DLBCL as a separate entity with distinct clinical and morpho-molecular features. These insights may aid in developing tailored therapeutic strategies and shed light on its pathogenesis.


Sujet(s)
Lymphome B diffus à grandes cellules , Humains , Hybridation fluorescente in situ , Lymphome B diffus à grandes cellules/génétique , Lymphome B diffus à grandes cellules/anatomopathologie , Mutation , Centre germinatif/anatomopathologie , Pronostic , Protéines proto-oncogènes c-bcl-2/génétique
7.
FEBS J ; 291(3): 477-488, 2024 02.
Article de Anglais | MEDLINE | ID: mdl-37984833

RÉSUMÉ

Basement membranes are among the most widespread, non-cellular functional materials in metazoan organisms. Despite this ubiquity, the links between their compositional and biophysical properties are often difficult to establish due to their thin and delicate nature. In this article, we examine these features on a molecular level by combining results from proteomics, elastic, and nanomechanical analyses across a selection of human basement membranes. Comparing results between these different membranes connects certain compositional attributes to distinct nanomechanical signatures and further demonstrates to what extent water defines these properties. In all, these data underline BMs as stiff yet highly elastic connective tissue layers and highlight how the interplay between composition, mechanics and hydration yields such exceptionally adaptable materials.


Sujet(s)
Laminine , Humains , Animaux , Membrane basale/composition chimique , Microscopie à force atomique , Laminine/analyse
8.
Pathobiology ; 91(1): 55-75, 2024.
Article de Anglais | MEDLINE | ID: mdl-37232015

RÉSUMÉ

Disease progression in myelodysplastic syndromes (MDS), myelodysplastic-myeloproliferative neoplasms (MDS/MPN), and myeloproliferative neoplasms (MPN), altogether referred to as myeloid neoplasms (MN), is a major source of mortality. Apart from transformation to acute myeloid leukemia, the clinical progression of MN is mostly due to the overgrowth of pre-existing hematopoiesis by the MN without an additional transforming event. Still, MN may evolve along other recurrent yet less well-known scenarios: (1) acquisition of MPN features in MDS or (2) MDS features in MPN, (3) progressive myelofibrosis (MF), (4) acquisition of chronic myelomonocytic leukemia (CMML)-like characteristics in MPN or MDS, (5) development of myeloid sarcoma (MS), (6) lymphoblastic (LB) transformation, (7) histiocytic/dendritic outgrowths. These MN-transformation types exhibit a propensity for extramedullary sites (e.g., skin, lymph nodes, liver), highlighting the importance of lesional biopsies in diagnosis. Gain of distinct mutations/mutational patterns seems to be causative or at least accompanying several of the above-mentioned scenarios. MDS developing MPN features often acquire MPN driver mutations (usually JAK2), and MF. Conversely, MPN gaining MDS features develop, e.g., ASXL1, IDH1/2, SF3B1, and/or SRSF2 mutations. Mutations of RAS-genes are often detected in CMML-like MPN progression. MS ex MN is characterized by complex karyotypes, FLT3 and/or NPM1 mutations, and often monoblastic phenotype. MN with LB transformation is associated with secondary genetic events linked to lineage reprogramming leading to the deregulation of ETV6, IKZF1, PAX5, PU.1, and RUNX1. Finally, the acquisition of MAPK-pathway gene mutations may shape MN toward histiocytic differentiation. Awareness of all these less well-known MN-progression types is important to guide optimal individual patient management.


Sujet(s)
Leucémie aigüe myéloïde , Syndromes myélodysplasiques , Maladies myélodysplasiques-myéloprolifératives , Syndromes myéloprolifératifs , Humains , Précurseurs des granulocytes/anatomopathologie , Syndromes myéloprolifératifs/diagnostic , Syndromes myéloprolifératifs/génétique , Syndromes myéloprolifératifs/anatomopathologie , Syndromes myélodysplasiques/diagnostic , Syndromes myélodysplasiques/génétique , Syndromes myélodysplasiques/anatomopathologie , Mutation , Maladies myélodysplasiques-myéloprolifératives/génétique , Maladies myélodysplasiques-myéloprolifératives/anatomopathologie , Leucémie aigüe myéloïde/diagnostic , Leucémie aigüe myéloïde/génétique
9.
Pathobiology ; 2023 Dec 21.
Article de Anglais | MEDLINE | ID: mdl-38128501

RÉSUMÉ

INTRODUCTION: Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous entity. Lately, several algorithms achieving therapeutically and prognostically relevant DLBCL subclassification have been published. METHODS: A cohort of 74 routine DLBCL cases was broadly characterized by immunohistochemistry (IHC), fluorescence in situ hybridization (FISH) of the BCL2, BCL6 and MYC loci, and comprehensive high throughput sequencing (HTS). Based on the genetic alterations found, cases were reclassified using two probabilistic tools - LymphGen and Two-step classifier, allowing for comparison of the two models. RESULTS: Hans and Tally's overall IHC-based subclassification success rate was 96% and 82%, respectively. HTS and FISH data allowed the LymphGen algorithm to successfully classify 11/55 cases, (1 - BN2, 7 - EZB, 1 - MCD, and 2 - genetically composite EZB/N1). The total subclassification rate was 20%. On the other hand, the Two-step classifier categorized 36/55 cases, with 65.5% success (9 - BN2, 12 - EZB, 9 - MCD, 2 - N1, and 4 - ST2). Clinical correlations highlighted MCD as an aggressive subtype associated with higher relapse and mortality. CONCLUSIONS: The Two-step algorithm has a better success rate at subclassifying DLBCL cases based on genetic differences. Further improvement of the classifiers is required to increase the number of classifiable cases and thus prove their applicability in routine diagnostics.

10.
Front Immunol ; 14: 1285168, 2023.
Article de Anglais | MEDLINE | ID: mdl-38035070

RÉSUMÉ

mRNA-based vaccines against SARS-CoV-2 have been proven to be very efficient in preventing severe COVID-19. Temporary lymphadenopathy (LA) has been observed as a common adverse event following immunization. Here we describe a case series of three female patients with prominent local to generalized LA after SARS-CoV-2 mRNA-1273 vaccination, which led to lymph node biopsy due to the suspicion of lymphoma or metastasis. All three patients morphologically showed similar patterns of follicular hyperplasia and especially extrafollicular blast activation. Two of the three patients only had short-lasting humoral immune responses to the vaccination. Gene expression profiling (GEP) using the HTG Immune response panel revealed that all three patients clustered together and clearly differed from the GEP-patterns of COVID-19, infectious mononucleosis and non-specific follicular hyperplasia. The closest similarities were seen with lymph nodes showing extrafollicular activation of B-blasts as well as hemophagocytosis. The GEP of the vaccination-induced LA was reminiscent of an immune response with little potential of immunologic memory. mRNA-1273 vaccination-induced LA may to a certain extend reflect disordered immune response with potentially poor immunologic memory in affected individuals.


Sujet(s)
Vaccins contre la COVID-19 , COVID-19 , Lymphadénopathie , Femelle , Humains , Vaccin ARNm-1273 contre la COVID-19 , Vaccins contre la COVID-19/effets indésirables , Analyse de profil d'expression de gènes , Hyperplasie , Mémoire immunologique , Lymphadénopathie/étiologie , SARS-CoV-2 , Vaccination/effets indésirables
11.
Heliyon ; 9(11): e21893, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-38034686

RÉSUMÉ

Background: Toll-like receptors (TLRs) play a pivotal role in the immunologic response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Exaggerated inflammatory response of innate immune cells, however, may drive morbidity and death in Coronavirus disease 19 (COVID-19). Objective: We investigated the engagement of SARS-CoV-2 with TLR4 in order to better understand how to tackle hyperinflammation in COVID-19. Methods: We combined RNA-sequencing data of human lung tissue and of bronchoalveolar lavage fluid cells derived from COVID-19 patients with functional studies in human macrophages using SARS-CoV-2 spike proteins and viable SARS-CoV-2. Pharmacological inhibitors as well as gene editing with CRISPR/Cas9 were used to delineate the signalling pathways involved. Results: We found TLR4 to be the most abundantly upregulated TLR in human lung tissue irrespective of the underlying pathology. Accordingly, bronchoalveolar lavage fluid cells from patients with severe COVID-19 showed an NF-κB-pathway dominated immune response, whereas they were mostly defined by type I interferon signalling in moderate COVID-19. Mechanistically, we found the Spike ectodomain, but not receptor binding domain monomer to induce TLR4-dependent inflammation in human macrophages. By using pharmacological inhibitors as well as CRISPR/Cas9 deleted macrophages, we identify SARS-CoV-2 to engage canonical TLR4-MyD88 signalling. Importantly, we demonstrate that TLR4 blockage prevents exaggerated inflammatory responses in human macrophages infected with different SARS-CoV-2 variants, including immune escape variants B.1.1.7.-E484K and B.1.1.529 (omicron). Conclusion: Our study critically extends the current knowledge on TLR-mediated hyperinflammatory responses to SARS-CoV-2 in human macrophages, paving the way for novel approaches to tackle severe COVID-19. Take-home message: Our study combining human lung transcriptomics with functional studies in human macrophages clearly supports the design and development of TLR4 - directed therapeutics to mitigate hyperinflammation in severe COVID-19.

12.
Ann Clin Transl Neurol ; 10(12): 2347-2359, 2023 12.
Article de Anglais | MEDLINE | ID: mdl-37849451

RÉSUMÉ

OBJECTIVE: Disease-modifying therapies are available for amyloidosis but are ineffective if end-organ damage is severe. As small fiber neuropathy is an early and common feature of amyloidosis, we assessed detection and typing yield of skin biopsy for amyloid in patients with confirmed systemic amyloidosis and neuropathic symptoms. METHODS: In this case-control study, patients with transthyretin and light chain amyloidosis (ATTRv, ATTRwt, and AL) were consecutively recruited. They were sex and age-matched to three control groups (1) non-neuropathic controls (NNC), (2) monoclonal gammopathy of undetermined significance (MGUS), and (3) other neuropathic disease controls (ONC). Patients underwent a double 3 mm skin biopsy in proximal and distal leg. Amyloid index and burden, protein typing by immuno-electron microscopy, intraepidermal nerve fiber density, electroneuromyography, and clinical characteristics were analyzed. RESULTS: We studied 15 subjects with confirmed systemic amyloidosis, 20 NNC, 18 MGUS, and 20 ONC. Amyloid was detected in 100% of patients with amyloidosis (87% in ankle and 73% in thigh). It was not detected in any of the control groups. A small fiber neuropathy was encountered in 100% of amyloidosis patients, in 80% of MGUS, and in 78% of ONC. Amyloid burden was higher in ATTRv, followed by AL and ATTRwt. The ultrastructural examination allowed the identification of the precursor protein by immunotyping in most of the cases. INTERPRETATION: Skin biopsy is a minimally invasive test with optimal sensitivity for amyloid. It allows amyloid typing by electron microscope to identify the precursor protein. The diagnostic work up of systemic amyloidosis should include a skin biopsy.


Sujet(s)
Amyloïdose , Neuropathies périphériques , Polyneuropathies , Neuropathie des petites fibres , Humains , Études cas-témoins , Amyloïdose/diagnostic , Amyloïdose/métabolisme , Amyloïde/métabolisme , Biopsie
13.
Clin Cancer Res ; 29(23): 4808-4821, 2023 12 01.
Article de Anglais | MEDLINE | ID: mdl-37728879

RÉSUMÉ

PURPOSE: Tumor-infiltrating B lymphocytes (TIL-B) have demonstrated prognostic and predictive significance in solid cancers. In this study, we aimed to distinguish TIL-Bs from malignant B-cells in diffuse large B-cell lymphoma (DLBCL) and determine the clinical and biological significance. EXPERIMENTAL DESIGN: A total of 269 patients with de novo DLBCL from the International DLBCL R-CHOP Consortium Program were studied. Ultra-deep sequencing of the immunoglobulin genes was performed to determine B-cell clonotypes. The frequencies and numbers of TIL-B clonotypes in individual repertoires were correlated with patient survival, gene expression profiling (GEP) data, and frequencies of DLBCL-infiltrating immune cells quantified by fluorescent multiplex IHC at single-cell resolution. RESULTS: TIL-B abundance, evaluated by frequencies of normal B-cell clonotypes in the immunoglobulin repertoires, remarkably showed positive associations with significantly better survival of patients in our sequenced cohorts. DLBCLs with high versus low TIL-B abundance displayed distinct GEP signatures, increased pre-memory B-cell state and naïve CD4 T-cell state fractions, and higher CD4+ T-cell infiltration. TIL-B frequency, as a new biomarker in DLBCL, outperformed the germinal center (GC) B-cell-like/activated B-cell-like classification and TIL-T frequency. The identified TIL-B-high GEP signature, including genes upregulated during T-dependent B-cell activation and those highly expressed in normal GC B cells and T cells, showed significant favorable prognostic effects in several external validation cohorts. CONCLUSIONS: TIL-B frequency is a significant prognostic factor in DLBCL and plays a crucial role in antitumor immune responses. This study provides novel insights into the prognostic determinants in DLBCL and TIL-B functions with important therapeutic implications.


Sujet(s)
Lymphocytes B , Lymphome B diffus à grandes cellules , Humains , Pronostic , Lymphocytes B/métabolisme , Lymphome B diffus à grandes cellules/traitement médicamenteux , Immunité , Immunoglobulines/métabolisme
14.
Br J Haematol ; 203(2): 244-254, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37584198

RÉSUMÉ

The transcriptional factor ETS1 is upregulated in 25% of diffuse large B cell lymphoma (DLBCL). Here, we studied the role of ETS1 phosphorylation at threonine 38, a marker for ETS1 activation, in DLBCL cellular models and clinical specimens. p-ETS1 was detected in activated B cell-like DLBCL (ABC), not in germinal centre B-cell-like DLBCL (GCB) cell lines and, accordingly, it was more common in ABC than GCB DLBCL diagnostic biopsies. MEK inhibition decreased both baseline and IgM stimulation-induced p-ETS1 levels. Genetic inhibition of phosphorylation of ETS1 at threonine 38 affected the growth and the BCR-mediated transcriptome program in DLBCL cell lines. Our data demonstrate that ETS1 phosphorylation at threonine 38 is important for the growth of DLBCL cells and its pharmacological inhibition could benefit lymphoma patients.

15.
J Allergy Clin Immunol ; 152(4): 1019-1024, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37423405

RÉSUMÉ

BACKGROUND: Systemic mastocytosis is characterized by expansion of clonal mast cells in various tissues. Several biomarkers with diagnostic and therapeutic potential have recently been characterized in mastocytosis, such as the serum marker tryptase and the immune checkpoint molecule PD-L1. OBJECTIVE: We aimed to investigate whether serum levels of other checkpoint molecules are altered in systemic mastocytosis and whether these proteins are expressed in mastocytosis infiltrates in the bone marrow. METHODS: Levels of different checkpoint molecules were analyzed in serum of patients with different categories of systemic mastocytosis and healthy controls and correlated to disease severity. Bone marrow biopsies from patients with systemic mastocytosis were stained to confirm expression. RESULTS: Serum levels of TIM-3 and galectin-9 were increased in systemic mastocytosis, particularly in advanced subtypes, compared with healthy controls. TIM-3 and galectin-9 levels were also found to correlate with other biomarkers of systemic mastocytosis, such as serum tryptase and KIT D816V variant allele frequency in the peripheral blood. Moreover, we observed expression of TIM-3 and galectin-9 in mastocytosis infiltrates in bone marrow. CONCLUSIONS: Together, our results demonstrate for the first time that serum levels of TIM-3 and galectin-9 are increased in advanced systemic mastocytosis. Moreover, TIM-3 and galectin-9 are expressed in bone marrow infiltrates in mastocytosis. These findings provide a rationale for exploring TIM-3 and galectin-9 as diagnostic markers and eventually therapeutic targets in systemic mastocytosis, particularly in advanced forms.

16.
Pathobiology ; 90(6): 422-428, 2023.
Article de Anglais | MEDLINE | ID: mdl-37490879

RÉSUMÉ

INTRODUCTION: Primary mediastinal large B-cell lymphoma (PMBL) is a rarely occurring lymphoid malignancy which typically affects young adults and presents itself as an anterior mediastinal mass. Gene expression profiling as well as somatic genetic analysis revealed that it is closely related to classical Hodgkin lymphoma, whereas morphologically, it tends to resemble diffuse large B-cell lymphoma. Familial clustering of PMBL is rare - only two reports have been published to date. While it is generally accepted that positive family history is associated with increased risk of developing a lymphoma, genetic risk factors which might predispose to PMBL are largely unknown. CASE PRESENTATION: We performed germline and tumor genetic analyses by whole-exome sequencing and array-CGH of a family, in which the father and the son both developed a PMBL. Germline investigations of both affected patients and of their two unaffected family members have not been able to provide a single risk factor associated with lymphoma predisposition. In addition, genes that were previously implicated in increased risk for PMBL, namely MLL (KMT2A) and TIRAP, were found to be intact in all investigated family members. Somatic genetic investigations identified known as well as novel genetic aberrations in tumors of the affected subjects. CONCLUSION: We conclude that predisposition to a PMBL might be inherited through a combination of low- or moderate-risk factors and provide a shortlist of the most likely selected candidates, which can be used in future studies.


Sujet(s)
Lymphome B diffus à grandes cellules , Jeune adulte , Humains , Lymphome B diffus à grandes cellules/génétique , Analyse de profil d'expression de gènes
17.
Res Pract Thromb Haemost ; 7(4): 100182, 2023 May.
Article de Anglais | MEDLINE | ID: mdl-37333991

RÉSUMÉ

Background: COVID-19 is accompanied by a hypercoagulable state and characterized by microvascular and macrovascular thrombotic complications. In plasma samples from patients with COVID-19, von Willebrand factor (VWF) levels are highly elevated and predictive of adverse outcomes, especially mortality. Yet, VWF is usually not included in routine coagulation analyses, and histologic evidence of its involvement in thrombus formation is lacking. Objectives: To determine whether VWF, an acute-phase protein, is a bystander, ie, a biomarker of endothelial dysfunction, or a causal factor in the pathogenesis of COVID-19. Methods: We compared autopsy samples from 28 patients with lethal COVID-19 to those from matched controls and systematically assessed for VWF and platelets by immunohistochemistry. The control group comprised 24 lungs, 23 lymph nodes, and 9 hearts and did not differ significantly from the COVID-19 group in age, sex, body mass index (BMI), blood group, or anticoagulant use. Results: In lungs, assessed for platelets by immunohistochemistry for CD42b, microthrombi were more frequent in patients with COVID-19 (10/28 [36%] vs 2/24 [8%]; P = .02). A completely normal pattern of VWF was rare in both groups. Accentuated endothelial staining was found in controls, while VWF-rich thrombi were only found in patients with COVID-19 (11/28 [39%] vs 0/24 [0%], respectively; P < .01), as were NETosis thrombi enriched with VWF (7/28 [25%] vs 0/24 [0%], respectively; P < .01). Forty-six percent of the patients with COVID-19 had VWF-rich thrombi, NETosis thrombi, or both. Trends were also seen in pulmonary draining lymph nodes (7/20 [35%] vs 4/24 [17%]; P = .147), where the overall presence of VWF was very high. Conclusion: We provide in situ evidence of VWF-rich thrombi, likely attributable to COVID-19, and suggest that VWF may be a therapeutic target in severe COVID-19.

18.
Am J Hematol ; 98(8): 1286-1306, 2023 08.
Article de Anglais | MEDLINE | ID: mdl-37283522

RÉSUMÉ

Based on new data and increased understanding of disease molecular genetics, the international consensus classification (ICC) has made several changes in the diagnosis and classification of eosinophilic disorders and systemic mastocytosis. Myeloid/lymphoid neoplasms with eosinophilia (M/LN-eo) and gene rearrangements have been renamed as M/LN-eo with tyrosine kinase gene fusions (M/LN-eo-TK). The category has been expanded to include ETV6::ABL1 and FLT3 fusions, and to accept PCM1::JAK2 and its genetic variants as formal members. The overlaps and differences between M/LN-eo-TK and BCR::ABL1-like B-lymphoblastic leukemia (ALL)/de novo T-ALL sharing the same genetic lesions are addressed. Besides genetics, ICC for the first time has introduced bone marrow morphologic criteria in distinguishing idiopathic hypereosinophilia/hypereosinophilic syndrome from chronic eosinophilic leukemia, not otherwise specified. The major diagnostic criteria for systemic mastocytosis (SM) in the ICC remain largely based on morphology, but several minor modifications/refinements have been made in criteria related to diagnosis, subclassification, and assessment of disease burden (B- and C-findings). This review is to focus on the ICC updates related to these disease entities, illustrated through changes related to morphology, molecular genetics, clinical features, prognosis, and treatment. Two practical algorithms are provided in navigating through the diagnosis and classification systems of hypereosinophilia and SM.


Sujet(s)
Syndrome hyperéosinophilique , Leucémies , Mastocytose généralisée , Syndromes myéloprolifératifs , Humains , Mastocytose généralisée/diagnostic , Mastocytose généralisée/génétique , Consensus , Leucémies/génétique , Syndromes myéloprolifératifs/diagnostic , Syndromes myéloprolifératifs/génétique , Syndromes myéloprolifératifs/traitement médicamenteux , Syndrome hyperéosinophilique/diagnostic , Syndrome hyperéosinophilique/génétique , Syndrome hyperéosinophilique/anatomopathologie
19.
J Hepatol ; 79(3): 666-676, 2023 09.
Article de Anglais | MEDLINE | ID: mdl-37290592

RÉSUMÉ

BACKGROUND & AIMS: Liver injury after COVID-19 vaccination is very rare and shows clinical and histomorphological similarities with autoimmune hepatitis (AIH). Little is known about the pathophysiology of COVID-19 vaccine-induced liver injury (VILI) and its relationship to AIH. Therefore, we compared VILI with AIH. METHODS: Formalin-fixed and paraffin-embedded liver biopsy samples from patients with VILI (n = 6) and from patients with an initial diagnosis of AIH (n = 9) were included. Both cohorts were compared by histomorphological evaluation, whole-transcriptome and spatial transcriptome sequencing, multiplex immunofluorescence, and immune repertoire sequencing. RESULTS: Histomorphology was similar in both cohorts but showed more pronounced centrilobular necrosis in VILI. Gene expression profiling showed that mitochondrial metabolism and oxidative stress-related pathways were more and interferon response pathways were less enriched in VILI. Multiplex analysis revealed that inflammation in VILI was dominated by CD8+ effector T cells, similar to drug-induced autoimmune-like hepatitis. In contrast, AIH showed a dominance of CD4+ effector T cells and CD79a+ B and plasma cells. T-cell receptor (TCR) and B-cell receptor sequencing showed that T and B cell clones were more dominant in VILI than in AIH. In addition, many T cell clones detected in the liver were also found in the blood. Interestingly, analysis of TCR beta chain and Ig heavy chain variable-joining gene usage further showed that TRBV6-1, TRBV5-1, TRBV7-6, and IgHV1-24 genes are used differently in VILI than in AIH. CONCLUSIONS: Our analyses support that SARS-CoV-2 VILI is related to AIH but also shows distinct differences from AIH in histomorphology, pathway activation, cellular immune infiltrates, and TCR usage. Therefore, VILI may be a separate entity, which is distinct from AIH and more closely related to drug-induced autoimmune-like hepatitis. IMPACT AND IMPLICATIONS: Little is known about the pathophysiology of COVID-19 vaccine-induced liver injury (VILI). Our analysis shows that COVID-19 VILI shares some similarities with autoimmune hepatitis, but also has distinct differences such as increased activation of metabolic pathways, a more prominent CD8+ T cell infiltrate, and an oligoclonal T and B cell response. Our findings suggest that VILI is a distinct disease entity. Therefore, there is a good chance that many patients with COVID-19 VILI will recover completely and will not develop long-term autoimmune hepatitis.


Sujet(s)
COVID-19 , Lésions hépatiques chroniques d'origine chimique ou médicamenteuse , Hépatite auto-immune , Humains , Vaccins contre la COVID-19/effets indésirables , SARS-CoV-2 , COVID-19/prévention et contrôle , Foie/anatomopathologie , Récepteurs aux antigènes des cellules T , Vaccination
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE