Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 11 de 11
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Mol Cell Biol ; 36(22): 2768-2781, 2016 11 15.
Article de Anglais | MEDLINE | ID: mdl-27550811

RÉSUMÉ

Recognition of histone marks by reader modules is thought to be at the heart of epigenetic mechanisms. These protein domains are considered to function by targeting regulators to chromosomal loci carrying specific histone modifications. This is important for proper gene regulation as well as propagation of epigenetic information. The NuA4 acetyltransferase complex contains two of these reader modules, an H3K4me3-specific plant homeodomain (PHD) within the Yng2 subunit and an H3K36me2/3-specific chromodomain in the Eaf3 subunit. While each domain showed a close functional interaction with the respective histone mark that it recognizes, at the biochemical level, genetic level (as assessed with epistatic miniarray profile screens), and phenotypic level, cells with the combined loss of both readers showed greatly enhanced phenotypes. Chromatin immunoprecipitation coupled with next-generation sequencing experiments demonstrated that the Yng2 PHD specifically directs H4 acetylation near the transcription start site of highly expressed genes, while Eaf3 is important downstream on the body of the genes. Strikingly, the recruitment of the NuA4 complex to these loci was not significantly affected. Furthermore, RNA polymerase II occupancy was decreased only under conditions where both PHD and chromodomains were lost, generally in the second half of the gene coding regions. Altogether, these results argue that methylated histone reader modules in NuA4 are not responsible for its recruitment to the promoter or coding regions but, rather, are required to orient its acetyltransferase catalytic site to the methylated histone 3-bearing nucleosomes in the surrounding chromatin, cooperating to allow proper transition from transcription initiation to elongation.


Sujet(s)
Acetyltransferases/composition chimique , Génome fongique , Histone acetyltransferases/métabolisme , Histone/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Acétylation , Acetyltransferases/génétique , Acetyltransferases/métabolisme , Sites de fixation , Domaine catalytique , Immunoprécipitation de la chromatine , Épigenèse génétique , Séquençage nucléotidique à haut débit , Histone acetyltransferases/composition chimique , Code histone , Régions promotrices (génétique) , RNA polymerase II/métabolisme , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Analyse de séquence d'ADN , Site d'initiation de la transcription
2.
Eukaryot Cell ; 14(6): 535-44, 2015 Jun.
Article de Anglais | MEDLINE | ID: mdl-25841019

RÉSUMÉ

Proper modulation of promoter chromatin architecture is crucial for gene regulation in order to precisely and efficiently orchestrate various cellular activities. Previous studies have identified the stimulatory effect of the histone-modifying complex NuA4 on the incorporation of the histone variant H2A.Z (Htz1) at the PHO5 promoter (A. Auger, L. Galarneau, M. Altaf, A. Nourani, Y. Doyon, R. T. Utley, D. Cronier, S. Allard, and J. Côté, Mol Cell Biol 28:2257-2270, 2008, http://dx.doi.org/10.1128/MCB.01755-07). In vitro studies with a reconstituted system also indicated an intriguing cross talk between NuA4 and the H2A.Z-loading complex, SWR-C (M. Altaf, A. Auger, J. Monnet-Saksouk, J. Brodeur, S. Piquet, M. Cramet, N. Bouchard, N. Lacoste, R. T. Utley, L. Gaudreau, J. Côté, J Biol Chem 285:15966-15977, 2010, http://dx.doi.org/10.1074/jbc.M110.117069). In this work, we investigated the role of the NuA4 scaffold subunit Eaf1 in global gene expression and genome-wide incorporation of Htz1. We found that loss of Eaf1 affects Htz1 levels mostly at the promoters that are normally highly enriched in the histone variant. Analysis of eaf1 mutant cells by expression array unveiled a relationship between NuA4 and the gene network implicated in the purine biosynthesis pathway, as EAF1 deletion cripples induction of several ADE genes. NuA4 directly interacts with Bas1 activation domain, a key transcription factor of adenine genes. Chromatin immunoprecipitation (ChIP) experiments demonstrate that nucleosomes on the inactive ADE17 promoter are acetylated already by NuA4 and enriched in Htz1. Upon derepression, these poised nucleosomes respond rapidly to activate ADE gene expression in a mechanism likely reminiscent of the PHO5 promoter, leading to nucleosome disassembly. These detailed molecular events depict a specific case of cross talk between NuA4-dependent acetylation and incorporation of histone variant Htz1, presetting the chromatin structure over ADE promoters for subsequent chromatin remodeling and activated transcription.


Sujet(s)
Histone acetyltransferases/métabolisme , Histone/métabolisme , Purines/biosynthèse , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Assemblage et désassemblage de la chromatine , Régulation de l'expression des gènes fongiques , Histone acetyltransferases/génétique , Histone/génétique , Régions promotrices (génétique) , Liaison aux protéines , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Transactivateurs/génétique , Transactivateurs/métabolisme
3.
Nat Struct Mol Biol ; 18(11): 1196-203, 2011 Oct 09.
Article de Anglais | MEDLINE | ID: mdl-21984211

RÉSUMÉ

We have used EM and biochemistry to characterize the structure of NuA4, an essential yeast histone acetyltransferase (HAT) complex conserved throughout eukaryotes, and we have determined the interaction of NuA4 with the nucleosome core particle (NCP). The ATM-related Tra1 subunit, which is shared with the SAGA coactivator complex, forms a large domain joined to a second region that accommodates the catalytic subcomplex Piccolo and other NuA4 subunits. EM analysis of a NuA4-NCP complex shows the NCP bound at the periphery of NuA4. EM characterization of Piccolo and Piccolo-NCP provided further information about subunit organization and confirmed that histone acetylation requires minimal contact with the NCP. A small conserved region at the N terminus of Piccolo subunit enhancer of Polycomb-like 1 (Epl1) is essential for NCP interaction, whereas the subunit yeast homolog of mammalian Ing1 2 (Yng2) apparently positions Piccolo for efficient acetylation of histone H4 or histone H2A tails. Taken together, these results provide an understanding of the NuA4 subunit organization and the NuA4-NCP interactions.


Sujet(s)
Histone acetyltransferases/composition chimique , Histone acetyltransferases/métabolisme , Nucléosomes/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/métabolisme , Acétylation , Animaux , Chromatine/métabolisme , Histone acetyltransferases/génétique , Modèles moléculaires , Complexes multiprotéiques/métabolisme , Nucléosomes/composition chimique , Conformation des protéines , Sous-unités de protéines/composition chimique , Sous-unités de protéines/génétique , Sous-unités de protéines/métabolisme , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique
4.
J Biol Chem ; 285(21): 15966-77, 2010 May 21.
Article de Anglais | MEDLINE | ID: mdl-20332092

RÉSUMÉ

Structural and functional analyses of nucleosomes containing histone variant H2A.Z have drawn a lot of interest over the past few years. Important work in budding yeast has shown that H2A.Z (Htz1)-containing nucleosomes are specifically located on the promoter regions of genes, creating a specific chromatin structure that is poised for disassembly during transcription activation. The SWR1 complex is responsible for incorporation of Htz1 into nucleosomes through ATP-dependent exchange of canonical H2A-H2B dimers for Htz1-H2B dimers. Interestingly, the yeast SWR1 complex is functionally linked to the NuA4 acetyltransferase complex in vivo. NuA4 and SWR1 are physically associated in higher eukaryotes as they are homologous to the TIP60/p400 complex, which encompasses both histone acetyltransferase (Tip60) and histone exchange (p400/Domino) activities. Here we present work investigating the impact of NuA4-dependent acetylation on SWR1-driven incorporation of H2A.Z into chromatin. Using in vitro histone exchange assays with native chromatin, we demonstrate that prior chromatin acetylation by NuA4 greatly stimulates the exchange of H2A for H2A.Z. Interestingly, we find that acetylation of H2A or H4 N-terminal tails by NuA4 can independently stimulate SWR1 activity. Accordingly, we demonstrate that mutations of H4 or H2A N-terminal lysine residues have similar effects on H2A.Z incorporation in vivo, and cells carrying mutations in both tails are nonviable. Finally, depletion experiments indicate that the bromodomain-containing protein Bdf1 is important for NuA4-dependent stimulation of SWR1. These results provide important mechanistic insight into the functional cross-talk between chromatin acetylation and ATP-dependent exchange of histone H2A variants.


Sujet(s)
Adenosine triphosphatases/métabolisme , Assemblage et désassemblage de la chromatine/physiologie , Histone acetyltransferases/métabolisme , Histone/métabolisme , Nucléosomes/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/métabolisme , Acétylation , Adenosine triphosphatases/génétique , Adénosine triphosphate/génétique , Adénosine triphosphate/métabolisme , Histone acetyltransferases/génétique , Histone/génétique , Mutation , Nucléosomes/génétique , Multimérisation de protéines/physiologie , Structure tertiaire des protéines , Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/génétique , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme
5.
Mol Cell Biol ; 28(7): 2257-70, 2008 Apr.
Article de Anglais | MEDLINE | ID: mdl-18212047

RÉSUMÉ

Eaf1 (for Esa1-associated factor 1) and Eaf2 have been identified as stable subunits of NuA4, a yeast histone H4/H2A acetyltransferase complex implicated in gene regulation and DNA repair. While both SWI3-ADA2-N-CoR-TF IIIB domain-containing proteins are required for normal cell cycle progression, their depletion does not affect the global Esa1-dependent acetylation of histones. In contrast to all other subunits, Eaf1 is found exclusively associated with the NuA4 complex in vivo. It serves as a platform that coordinates the assembly of functional groups of subunits into the native NuA4 complex. Eaf1 shows structural similarities with human p400/Domino, a subunit of the NuA4-related TIP60 complex. On the other hand, p400 also possesses an SWI2/SNF2 family ATPase domain that is absent from the yeast NuA4 complex. This domain is highly related to the yeast Swr1 protein, which is responsible for the incorporation of histone variant H2AZ in chromatin. Since all of the components of the TIP60 complex are homologous to SWR1 or NuA4 subunits, we proposed that the human complex corresponds to a physical merge of two yeast complexes. p400 function in TIP60 then would be accomplished in yeast by cooperation between SWR1 and NuA4. In agreement with such a model, NuA4 and SWR1 mutants show strong genetic interactions, NuA4 affects histone H2AZ incorporation/acetylation in vivo, and both preset the PHO5 promoter for activation. Interestingly, the expression of a chimeric Eaf1-Swr1 protein recreates a single human-like complex in yeast cells. Our results identified the key central subunit for the structure and functions of the NuA4 histone acetyltransferase complex and functionally linked this activity with the histone variant H2AZ from yeast to human cells.


Sujet(s)
Acetyltransferases/physiologie , Adénosine triphosphate/métabolisme , Chromatine/métabolisme , Histone acetyltransferases/physiologie , Histone/métabolisme , Maturation post-traductionnelle des protéines/physiologie , Protéines de Saccharomyces cerevisiae/physiologie , Acétylation , Acetyltransferases/composition chimique , Acid phosphatase , Adenosine triphosphatases/composition chimique , Adenosine triphosphatases/physiologie , Cellules eucaryotes/métabolisme , Évolution moléculaire , Histone acetyltransferases/composition chimique , Humains , Lysine acetyltransferase 5 , Régions promotrices (génétique) , Cartographie d'interactions entre protéines , Structure tertiaire des protéines , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Spécificité d'espèce , Relation structure-activité
6.
Mol Cell ; 28(6): 1002-14, 2007 Dec 28.
Article de Anglais | MEDLINE | ID: mdl-18158898

RÉSUMÉ

Dot1 (Disruptor of telomeric silencing-1) is a histone H3 lysine 79 methyltransferase that contributes to the establishment of heterochromatin boundary and has been linked to transcription elongation. We found that histone H4 N-terminal domain, unlike other histone tails, interacts with Dot1 and is essential for H3 K79 methylation. Furthermore, we show that the heterochromatin protein Sir3 inhibits Dot1-mediated methylation and that this inhibition is dependent on lysine 16 of H4. Sir3 and Dot1 bind the same short basic patch of histone H4 tail, and Sir3 also associates with the residues surrounding H3 K79 in a methylation-sensitive manner. Thus, Sir3 and Dot1 compete for the same molecular target on chromatin. ChIP analyses support a model in which acetylation of H4 lysine 16 displaces Sir3, allowing Dot1 to bind and methylate H3 lysine 79, which in turn further blocks Sir3 binding/spreading. This draws a detailed picture of the succession of molecular events occurring during the establishment of telomeric heterochromatin boundaries.


Sujet(s)
Chromatine/métabolisme , Hétérochromatine/métabolisme , Histone/métabolisme , Télomère/métabolisme , Acétylation , Technique de Western , Immunoprécipitation de la chromatine , Protéines fongiques/génétique , Protéines fongiques/métabolisme , Histone/génétique , Lysine/génétique , Lysine/métabolisme , Méthylation , Protéines nucléaires/génétique , Protéines nucléaires/métabolisme , Nucléosomes/métabolisme , Liaison aux protéines , Télomère/génétique , Levures/génétique , Levures/métabolisme
7.
Mol Cell Biol ; 25(18): 8179-90, 2005 Sep.
Article de Anglais | MEDLINE | ID: mdl-16135807

RÉSUMÉ

The NuA4 complex is a histone H4/H2A acetyltransferase involved in transcription and DNA repair. While histone acetylation is important in many processes, it has become increasingly clear that additional histone modifications also play a crucial interrelated role. To understand how NuA4 action is regulated, we tested various H4 tail peptides harboring known modifications in HAT assays. While dimethylation at arginine 3 (R3M) had little effect on NuA4 activity, phosphorylation of serine 1 (S1P) strongly decreased the ability of the complex to acetylate H4 peptides. However, R3M in combination with S1P alleviates the repression of NuA4 activity. Chromatin from cells treated with DNA damage-inducing agents shows an increase in phosphorylation of serine 1 and a concomitant decrease in H4 acetylation. We found that casein kinase 2 phosphorylates histone H4 and associates with the Rpd3 deacetylase complex, demonstrating a physical connection between phosphorylation of serine 1 and unacetylated H4 tails. Chromatin immunoprecipitation experiments also link local phosphorylation of H4 with its deacetylation, during both transcription and DNA repair. Time course chromatin immunoprecipitation data support a model in which histone H4 phosphorylation occurs after NuA4 action during double-strand break repair at the step of chromatin restoration and deacetylation. These findings demonstrate that H4 phospho-serine 1 regulates chromatin acetylation by the NuA4 complex and that this process is important for normal gene expression and DNA repair.


Sujet(s)
Acetyltransferases/métabolisme , Réparation de l'ADN , Histone/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/enzymologie , Saccharomyces cerevisiae/génétique , Transcription génétique , Acétylation , Séquence d'acides aminés , Casein Kinase II/métabolisme , Chromatine/métabolisme , Altération de l'ADN , Résistance des champignons aux médicaments/génétique , Histone acetyltransferases , Histone deacetylases/métabolisme , Histone/génétique , Hydroxy-urée/pharmacologie , Méthanesulfonates/pharmacologie , Données de séquences moléculaires , Mutation , Peptides/génétique , Peptides/métabolisme , Phosphorylation , Protein-Serine-Threonine Kinases/métabolisme , Protéines de répression/métabolisme , Saccharomyces cerevisiae/effets des médicaments et des substances chimiques , Protéines de Saccharomyces cerevisiae/génétique , Sérine/métabolisme , Facteurs de transcription/métabolisme
8.
EMBO J ; 23(13): 2597-607, 2004 Jul 07.
Article de Anglais | MEDLINE | ID: mdl-15175650

RÉSUMÉ

The remodeling of the promoter chromatin structure is a key event for the induction of the PHO5 gene. Two DNA-binding proteins Pho2 and Pho4 are critical for this step. We found that the NuA4 histone acetyltransferase complex is essential for PHO5 transcriptional induction without affecting Pho4 translocation upon phosphate starvation. Our data also indicate that NuA4 is critical for the chromatin remodeling event that occurs over the PHO5 promoter prior to activation. Using Chromatin IP analysis, we found that Esa1-dependent histone H4 acetylation at the PHO5 promoter correlates with specific recruitment of the NuA4 complex to this locus under repressing conditions. We demonstrate that the homeodomain transcriptional activator Pho2 is responsible for this recruitment in vivo and interacts directly with the NuA4 complex. Finally, we show that Pho4 is unable to bind the PHO5 promoter without prior action of NuA4. These results indicate that, before induction, NuA4 complex recruitment by Pho2 is an essential event that presets the PHO5 promoter for subsequent binding by Pho4, chromatin remodeling and transcription.


Sujet(s)
Acetyltransferases/métabolisme , Chromatine/métabolisme , Protéines fongiques/métabolisme , Régions promotrices (génétique) , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Acétylation , Acetyltransferases/génétique , Acid phosphatase , Noyau de la cellule/métabolisme , Immunoprécipitation de la chromatine , Protéines de liaison à l'ADN/métabolisme , Activation enzymatique , Protéines fongiques/génétique , Histone acetyltransferases , Histone/métabolisme , Protéines à homéodomaine/métabolisme , Mutation , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Transactivateurs/métabolisme , Facteurs de transcription/métabolisme
9.
Genes Dev ; 17(11): 1415-28, 2003 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-12782659

RÉSUMÉ

Drosophila Enhancer of Polycomb, E(Pc), is a suppressor of position-effect variegation and an enhancer of both Polycomb and trithorax mutations. A homologous yeast protein, Epl1, is a subunit of the NuA4 histone acetyltransferase complex. Epl1 depletion causes cells to accumulate in G2/M and global loss of acetylated histones H4 and H2A. In relation to the Drosophila protein, mutation of Epl1 suppresses gene silencing by telomere position effect. Epl1 protein is found in the NuA4 complex and a novel highly active smaller complex named Piccolo NuA4 (picNuA4). The picNuA4 complex contains Esa1, Epl1, and Yng2 as subunits and strongly prefers chromatin over free histones as substrate. Epl1 conserved N-terminal domain bridges Esa1 and Yng2 together, stimulating Esa1 catalytic activity and enabling acetylation of chromatin substrates. A recombinant picNuA4 complex shows characteristics similar to the native complex, including strong chromatin preference. Cells expressing only the N-terminal half of Epl1 lack NuA4 HAT activity, but possess picNuA4 complex and activity. These results indicate that the essential aspect of Esa1 and Epl1 resides in picNuA4 function. We propose that picNuA4 represents a nontargeted histone H4/H2A acetyltransferase activity responsible for global acetylation, whereas the NuA4 complex is recruited to specific genomic loci to perturb locally the dynamic acetylation/deacetylation equilibrium.


Sujet(s)
Acetyltransferases/métabolisme , Chromatine/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Acétylation , Animaux , Chromatine/génétique , Drosophila/génétique , Protéines de Drosophila/génétique , Protéines de Drosophila/métabolisme , Éléments activateurs (génétique) , Histone acetyltransferases , Humains , Saccharomyces cerevisiae/enzymologie
10.
Trends Genet ; 19(6): 321-9, 2003 Jun.
Article de Anglais | MEDLINE | ID: mdl-12801725

RÉSUMÉ

Although histone acetylation has historically been linked to transcription activation, recent studies indicate that this modification and the enzymes that catalyze it have much broader and diverse functions. Histone acetyltransferase complexes are involved in such diverse processes as transcription activation, gene silencing, DNA repair and cell-cycle progression. The high conservation of the acetyltransferase complexes and their functions illustrates their central role in cell growth and development.


Sujet(s)
Acetyltransferases/métabolisme , Histone deacetylases/métabolisme , Histone/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Acétylation , Séquence d'acides aminés , Animaux , Cycle cellulaire , Division cellulaire , Noyau de la cellule/enzymologie , Réparation de l'ADN , Extinction de l'expression des gènes , Histone acetyltransferases , Humains , Données de séquences moléculaires , Transcription génétique , Activation de la transcription
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE