Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Am J Physiol Cell Physiol ; 325(6): C1558-C1566, 2023 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-37955125

RÉSUMÉ

We addressed if hyperfiltration can be assessed transcutaneously in male diabetic obese mice (BTBRob/ob) at 12 and 24 wk and how this relates to glomerular parameters indicative for hyperfiltration. Transcutaneous assessment of FITC-Sinistrin clearance [transcutaneous assessment of glomerular filtration rate (tGFR)] was compared against classical plasma clearance. Kidney from SV620C-01-PEI perfused mice were harvested at 24 wk and processed for tissue clearing and classical histology. Perfusion patterns of glomerular capillaries, glomerular size, and vasodilation of the afferent arterioles were assessed. Although at 12 wk FITC-Sinistrin half-life (t1/2) for both tGFR and plasma clearance suggested hyperfiltration, this was not significant anymore at 24 wk. In kidneys of diabetic mice the diameter of the afferent arteriole was significantly larger and positively correlated with glomerular size. Glomerular perfusion pattern in these mice was heterogeneous ranging from non- to well-perfused glomeruli. Nonperfused glomerular areas displayed a strong periodic acid-Schiff's (PAS) positive staining. Collectively our data demonstrate that tGFR is a valid method to detect hyperfiltration. Hyperfiltration occurs early in BTBRob/ob mice and disappears with disease progression as a consequence of a reduced filtration surface. It remains to be assessed if tGFR is also a valid method in diabetic mice with severely compromised renal function.NEW & NOTEWORTHY tGFR measurement is a relatively new method to assess kidney function in conscious rodents, which can be repeated multiple times in the same animal to track the course of the disease and/or the effect of potential treatments. Since the literature was inconclusive on the suitability of this technique in obese mice, we validated it for the first time against classical plasma clearance in the commonly used BTBRob/ob mouse model.


Sujet(s)
Diabète expérimental , Néphropathies diabétiques , Maladies du rein , Mâle , Souris , Animaux , Débit de filtration glomérulaire , Souris obèse , Fluorescéines
2.
Am J Physiol Renal Physiol ; 323(1): F69-F80, 2022 07 01.
Article de Anglais | MEDLINE | ID: mdl-35635322

RÉSUMÉ

Dysregulation in glomerular hemodynamics favors hyperfiltration in diabetic kidney disease (DKD). Although carnosine supplementation ameliorates features of DKD, its effect on glomerular vasoregulation is not known. We assessed the influence of carnosine and carnosinase-1 (CN1) on afferent glomerular arteriole vasodilation and its association with glomerular size, hypertrophy, and nephrin expression in diabetic BTBRob/ob mice. Two cohorts of mice including appropriate controls were studied: i.e., diabetic mice that received oral carnosine supplementation (cohort 1) and human (h)CN1 transgenic (TG) diabetic mice (cohort 2). The lumen area ratio (LAR) of the afferent arterioles and glomerular parameters were measured by conventional histology. Three-dimensional analysis using a tissue clearing strategy was also used. In both cohorts, LAR was significantly larger in diabetic BTBRob/ob versus nondiabetic BTBRwt/ob mice (0.41 ± 0.05 vs. 0.26 ± 0.07, P < 0.0001 and 0.42 ± 0.06 vs. 0.29 ± 0.04, P < 0.0001) and associated with glomerular size (cohort 1: r = 0.55, P = 0.001 and cohort 2: r = 0.89, P < 0.0001). LAR was partially normalized by oral carnosine supplementation (0.34 ± 0.05 vs. 0.41 ± 0.05, P = 0.004) but did not differ between hCN1 TG and wild-type BTBRob/ob mice. In hCN1 TG mice, serum CN1 concentrations correlated with LAR (r = 0.90, P = 0.006). Diabetic mice displayed decreased nephrin expression and increased glomerular hypertrophy. This was not significantly different in hCN1 TG BTBRob/ob mice (P = 0.06 and P = 0.08, respectively). In conclusion, carnosine and CN1 may affect intraglomerular pressure in an opposing manner through the regulation of afferent arteriolar tone. This study corroborates previous findings on the role of carnosine in the progression of DKD.NEW & NOTEWORTHY Dysregulation in glomerular hemodynamics favors hyperfiltration in diabetic kidney disease (DKD). Although carnosine supplementation ameliorates features of DKD, its effect on glomerular vasoregulation is not known. We assessed the influence of carnosine and carnosinase-1 (CN1) on afferent glomerular arteriole vasodilation and its association with glomerular size, hypertrophy, and nephrin expression in diabetic BTBRob/ob mice. Our results provide evidence that carnosine feeding and CN1 overexpression likely affect intraglomerular pressure through vasoregulation of the afferent arteriole.


Sujet(s)
Carnosine , Diabète expérimental , Néphropathies diabétiques , Animaux , Artérioles/métabolisme , Carnosine/métabolisme , Carnosine/pharmacologie , Néphropathies diabétiques/traitement médicamenteux , Néphropathies diabétiques/anatomopathologie , Dipeptidases , Humains , Hypertrophie , Souris , Lignées consanguines de souris , Souris transgéniques , Vasodilatation
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...