Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 9 de 9
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Exp Parasitol ; 166: 21-8, 2016 Jul.
Article de Anglais | MEDLINE | ID: mdl-27013260

RÉSUMÉ

In recent years, considerable attention has been given to identify new antileishmanial products derived from medicinal plants, although, to date, no new effective compound has been recently applied to treat leishmaniasis. In the present study, the antileishmanial activity of a water extract from Zingiber officinalis Roscoe (ginger) was investigated and a purified fraction, named F10, was identified as responsible by this biological activity. The chemical characterization performed for this fraction showed that it is mainly composed by flavonoids and saponins. The water extract and the F10 fraction presented IC50 values of 125.5 and 49.8 µg/mL, respectively. Their selectivity indexes (SI) were calculated and values were seven and 40 times higher, respectively, in relation to the value found for amphotericin B, which was used as a control. Additional studies were performed to evaluate the toxicity of these compounds in human red blood cells, besides of the production of nitrite, as an indicator of nitric oxide (NO), in treated and infected macrophages. The results showed that both F10 fraction and water extract were not toxic to human cells, and they were able to stimulate the nitrite production, with values of 13.6 and 5.4 µM, respectively, suggesting that their biological activity could be due to macrophages activation via NO production. In conclusion, the present study shows that a purified fraction from ginger could be evaluated in future works as a therapeutic alternative, on its own or in association with other drugs, to treat disease caused by L. amazonensis.


Sujet(s)
Antiprotozoaires/pharmacologie , Leishmania mexicana/effets des médicaments et des substances chimiques , Leishmaniose cutanée/traitement médicamenteux , Extraits de plantes/pharmacologie , Zingiber officinale/composition chimique , Amphotéricine B/pharmacologie , Amphotéricine B/usage thérapeutique , Animaux , Antiprotozoaires/usage thérapeutique , Antiprotozoaires/toxicité , Chromatographie sur gel , Chromatographie sur couche mince , Érythrocytes/effets des médicaments et des substances chimiques , Femelle , Humains , Concentration inhibitrice 50 , Macrophages péritonéaux/effets des médicaments et des substances chimiques , Macrophages péritonéaux/métabolisme , Macrophages péritonéaux/parasitologie , Souris , Monoxyde d'azote/métabolisme , Extraits de plantes/usage thérapeutique , Extraits de plantes/toxicité , Rhizome/composition chimique , Organismes exempts d'organismes pathogènes spécifiques
2.
Exp Parasitol ; 143: 60-8, 2014 Aug.
Article de Anglais | MEDLINE | ID: mdl-24846006

RÉSUMÉ

Leishmaniasis is a major public health problem, and the alarming spread of parasite resistance has increased the importance of discovering new therapeutic products. The present study aimed to investigate the in vitro leishmanicidal activity from 16 different Brazilian medicinal plants. Stationary-phase promastigotes of Leishmania amazonensis and murine macrophages were exposed to 44 plant extracts or fractions for 48 h at 37°C, in order to evaluate their antileishmanial activity and cytotoxicity, respectively. The most potent extracts against L. amazonensis were the hexanic extract of Dipteryx alata (IC50 of 0.08 µg/mL), the hexanic extract of Syzygium cumini (IC50 of 31.64 µg/mL), the ethanolic and hexanic extracts of leaves of Hymenaea courbaril (IC50 of 44.10 µg/mL and 35.84 µg/mL, respectively), the ethanolic extract of H. stignocarpa (IC50 of 4.69 µg/mL), the ethanolic extract of Jacaranda caroba (IC50 of 13.22 µg/mL), and the ethanolic extract of J. cuspidifolia leaves (IC50 of 10.96 µg/mL). Extracts of D. alata and J. cuspidifolia presented higher selectivity index, with high leishmanicidal activity and low cytotoxicity in the mammalian cells. The capacity in treated infected macrophages using the extracts and/or fractions of D. alata and J. cuspidifolia was also analyzed, and reductions of 95.80%, 98.31%, and 97.16%, respectively, in the parasite burden, were observed. No nitric oxide (NO) production could be observed in the treated macrophages, after stimulation with the extracts and/or fractions of D. alata and J. cuspidifolia, suggesting that the biological activity could be due to mechanisms other than macrophage activation mediated by NO production. Based on phytochemistry studies, the classes of compounds that could contribute to the observed activities are also discussed. In conclusion, the data presented in this study indicated that traditional medicinal plant extracts present effective antileishmanial activity. Future studies could focus on the identification and purification of the antileishmanial compounds within these plants for analysis of their in vivo antileishmanial activity.


Sujet(s)
Antiprotozoaires/pharmacologie , Leishmania mexicana/effets des médicaments et des substances chimiques , Macrophages péritonéaux/effets des médicaments et des substances chimiques , Extraits de plantes/pharmacologie , Plantes médicinales/composition chimique , Animaux , Antiprotozoaires/toxicité , Brésil , Femelle , Flavonoïdes/analyse , Flavonoïdes/isolement et purification , Concentration inhibitrice 50 , Leishmaniose cutanée/traitement médicamenteux , Souris , Monoxyde d'azote/métabolisme , Phénols/analyse , Phénols/isolement et purification , Phytothérapie , Extraits de plantes/composition chimique , Extraits de plantes/toxicité
3.
Int J Nanomedicine ; 9: 877-90, 2014.
Article de Anglais | MEDLINE | ID: mdl-24627630

RÉSUMÉ

The study reported here aimed to develop an optimized nanoparticle delivery system for amphotericin B (AmpB) using a polyelectrolyte complexation technique. For this, two oppositely charged polymers presenting anti-leishmanial activity - chitosan (Cs) and chondroitin sulfate (ChS) - were used: Cs as a positively charged polymer and ChS as a negatively charged polymer. The chitosan (NQ) nanoparticles, chitosan-chondroitin sulfate (NQC) nanoparticles, and chitosan-chondroitin sulfate-amphotericin B (NQC-AmpB) nanoparticles presented a mean particle size of 79, 104, and 136 nm, respectively; and a polydispersity index of 0.2. The measured zeta potential of the nanoparticles indicated a positive charge in their surface, while scanning and transmission electron microscopy revealed spherical nanoparticles with a smooth surface. Attenuated total reflectance-Fourier transform infrared spectroscopy analysis showed an electrostatic interaction between the polymers, whereas the release profile of AmpB from the NQC-AmpB nanoparticles showed a controlled release. In addition, the Cs; ChS; and NQ, NQC, and NQC-AmpB nanoparticles proved to be effective against promastigotes of Leishmania amazonensis and Leishmania chagasi, with a synergistic effect observed between Cs and ChS. Moreover, the applied NQ, NQC, and NQC-AmpB compounds demonstrated low toxicity in murine macrophages, as well as null hemolytic activity in type O(+) human red blood cells. Pure AmpB demonstrated high toxicity in the macrophages. The results show that cells infected with L. amazonensis and later treated with Cs, ChS, NQ, NQC, NQC-AmpB nanoparticles, or pure AmpB presented with a significant reduction in parasite number in the order of 24%, 31%, 55%, 66%, 90%, and 89%, respectively. The data presented indicate that the engineered NQC-AmpB nanoparticles could potentially be used as an alternative therapy to treat leishmaniasis, mainly due its low toxicity to mammals' cells.


Sujet(s)
Amphotéricine B/administration et posologie , Systèmes de délivrance de médicaments , Leishmaniose/traitement médicamenteux , Nanoparticules/administration et posologie , Trypanocides/administration et posologie , Animaux , Chimie pharmaceutique , Chitosane/composition chimique , Chondroïtines sulfate/composition chimique , Femelle , Humains , Leishmania infantum/effets des médicaments et des substances chimiques , Leishmania mexicana/effets des médicaments et des substances chimiques , Leishmaniose/parasitologie , Macrophages/effets des médicaments et des substances chimiques , Macrophages/parasitologie , Souris , Souris de lignée BALB C , Nanomédecine , Nanoparticules/composition chimique , Nanoparticules/ultrastructure
4.
PLoS Negl Trop Dis ; 7(3): e2148, 2013.
Article de Anglais | MEDLINE | ID: mdl-23573301

RÉSUMÉ

BACKGROUND: The present study aimed to evaluate a hypothetical Leishmania amastigote-specific protein (LiHyp1), previously identified by an immunoproteomic approach performed in Leishmania infantum, which showed homology to the super-oxygenase gene family, attempting to select a new candidate antigen for specific serodiagnosis, as well as to compose a vaccine against VL. METHODOLOGY/PRINCIPAL FINDINGS: The LiHyp1 DNA sequence was cloned; the recombinant protein (rLiHyp1) was purified and evaluated for its antigenicity and immunogenicity. The rLiHyp1 protein was recognized by antibodies from sera of asymptomatic and symptomatic animals with canine visceral leishmaniasis (CVL), but presented no cross-reactivity with sera of dogs vaccinated with Leish-Tec, a Brazilian commercial vaccine; with Chagas' disease or healthy animals. In addition, the immunogenicity and protective efficacy of rLiHyp1 plus saponin was evaluated in BALB/c mice challenged subcutaneously with virulent L. infantum promastigotes. rLiHyp1 plus saponin vaccinated mice showed a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with the recombinant protein. Immunized and infected mice, as compared to the control groups (saline and saponin), showed significant reductions in the number of parasites found in the liver, spleen, bone marrow, and in the paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, produced mainly by CD4 T cells. In these mice, a decrease in the parasite-mediated IL-4 and IL-10 response could also be observed. CONCLUSIONS/SIGNIFICANCE: The present study showed that this Leishmania oxygenase amastigote-specific protein can be used for a more sensitive and specific serodiagnosis of asymptomatic and symptomatic CVL and, when combined with a Th1-type adjuvant, can also be employ as a candidate antigen to develop vaccines against VL.


Sujet(s)
Antigènes de protozoaire/immunologie , Leishmania infantum/immunologie , Leishmaniose viscérale/prévention et contrôle , Oxygénases/immunologie , Vaccins synthétiques/immunologie , Structures anatomiques de l'animal/parasitologie , Animaux , Antigènes de protozoaire/génétique , Antigènes de protozoaire/isolement et purification , Lymphocytes T CD4+/immunologie , Clonage moléculaire , Réactions croisées , Modèles animaux de maladie humaine , Maladies des chiens/immunologie , Maladies des chiens/parasitologie , Chiens , Dosage immunologique/méthodes , Interféron gamma/métabolisme , Interleukine-12/métabolisme , Leishmaniose/immunologie , Leishmaniose/prévention et contrôle , Leishmaniose/médecine vétérinaire , Leishmaniose viscérale/immunologie , Souris , Souris de lignée BALB C , Oxygénases/génétique , Oxygénases/isolement et purification , Charge parasitaire , Protéines recombinantes/génétique , Protéines recombinantes/immunologie , Protéines recombinantes/isolement et purification , Vaccins synthétiques/administration et posologie , Vaccins synthétiques/génétique
5.
Parasitol Res ; 111(4): 1807-16, 2012 Oct.
Article de Anglais | MEDLINE | ID: mdl-22797606

RÉSUMÉ

The development of therapeutic alternatives to treat leishmaniasis has received considerable attention. The present study aimed to investigate the efficacy of the Agaricus blazei Murill water extract (AbM) to treat BALB/c mice infected with Leishmania amazonensis. First, a dose-titration curve was performed. The most well-defined concentration able to induce the most effective results in the infected animals, considering a daily administration of the product, was that of 100 mg kg(-1) day(-1). In this context, the AbM was administered orally, beginning on day 0 up to 20 days postinfection. Additional animals were treated with amphotericin B (AmpB, 5 mg kg(-1) day(-1)) by peritoneal route for the same period of time, while the control group received distilled water. The animals were evaluated at 14 weeks post-infection, at which time the parasitological and immunological parameters were analyzed. Mice treated with the AbM presented a 60% reduction in the inflammation of infected footpads as compared to untreated control-infected mice. Moreover, in the treated mice, as compared to the untreated controls, approximately 60 and 66% reductions could be observed in the parasite burdens of the footpad and draining lymph nodes, respectively. In addition, no parasites could be detected in the spleen of treated mice at week 14 postinfection. These treated animals produced significantly higher levels of interferon gamma (IFN-γ) and nitric oxide (NO), higher levels of parasite-specific IgG2a isotype antibodies, and lower levels of interleukin (IL)-4, and IL-10 in the spleen and lymph node cell cultures than did the controls. Differences could be observed by comparing animals treated with AbM to those treated with AmpB, as indicated by a significant reduction in tissue parasitism, higher levels of IFN-γ and NO, and lower levels of IL-4 and IL-10, as well as by a decreased hepatic toxicity. In conclusion, the present study's data show that the A. blazei Murill water extract presents a high potential for the treatment of leishmaniasis, although additional studies on mice, as well as on other mammal hosts, are warranted in an attempt to determine this extract's true efficacy as compared to other known therapeutic products.


Sujet(s)
Agaricus/composition chimique , Produits biologiques/administration et posologie , Leishmaniose/traitement médicamenteux , Administration par voie orale , Animaux , Antiprotozoaires/administration et posologie , Antiprotozoaires/isolement et purification , Produits biologiques/isolement et purification , Cytokines/métabolisme , Modèles animaux de maladie humaine , Femelle , Pied/parasitologie , Humains , Leishmania/isolement et purification , Leishmaniose/parasitologie , Leishmaniose/anatomopathologie , Foie/parasitologie , Noeuds lymphatiques/parasitologie , Souris , Souris de lignée BALB C , Monoxyde d'azote/métabolisme , Charge parasitaire , Résultat thérapeutique
6.
Exp Parasitol ; 132(2): 228-36, 2012 Oct.
Article de Anglais | MEDLINE | ID: mdl-22824583

RÉSUMÉ

The present study aimed to investigate the in vitro antileishmanial activity of five fractions obtained from Agaricus blazei water extract (AbM), namely, Fab1, Fab2, Fab3, Fab4, and Fab5; and use the selected leishmanicidal fraction to treat BALB/c mice infected with Leishmania chagasi. A curve dose-titration was performed to obtain the concentration to be test in infected animals. In this context, Fab5 fraction and AbM were used in the doses of 20 and 100 mg/kg/day, respectively, with the product been administered once a day. The effect induced by a chemo-prophylactic regimen, based on the administration Fab5 fraction and AbM 5 days before infection, and maintained for an additional 20 days post-infection was compared to a therapeutic regimen, in which the compounds were administered from 0 to 20 days of infection. Control animals were either treated with amphotericin B deoxycholate (AmpB) or received distilled water. All groups were followed up for 10 weeks post-infection, when parasitological and immunological parameters were analyzed. The Fab5 presented the best results of in vitro leishmanicidal activity. In the in vivo experiments, the use of Fab5 or AbM, as compared to control groups, resulted in significant reduced parasite burdens in the liver, spleen, and draining lymph nodes of the infected animals, as compared to control groups. A Type 1 immune response was observed in the Fab5 or AbM treated animals. No significant toxicity was observed. The chemo-prophylactic regimen proved to be more effective to induce theses responses. In this context, the data presented in this study showed the potential of the purified Fab5 fraction of AbM as a therapeutic alternative to treat visceral leishmaniasis. In addition, it can be postulated that this fraction can be also employed in a chemo-prophylactic regimen associated or not with other therapeutic products.


Sujet(s)
Agaricus/composition chimique , Antiprotozoaires/pharmacologie , Leishmania infantum/effets des médicaments et des substances chimiques , Leishmaniose viscérale/traitement médicamenteux , Animaux , Antiprotozoaires/isolement et purification , Antiprotozoaires/usage thérapeutique , Cytokines/analyse , Modèles animaux de maladie humaine , Relation dose-effet des médicaments , Femelle , Hémolyse/effets des médicaments et des substances chimiques , Concentration inhibitrice 50 , Leishmaniose viscérale/prévention et contrôle , Foie/parasitologie , Noeuds lymphatiques/parasitologie , Macrophages péritonéaux/effets des médicaments et des substances chimiques , Macrophages péritonéaux/parasitologie , Souris , Souris de lignée BALB C , Organismes exempts d'organismes pathogènes spécifiques , Rate/immunologie , Rate/parasitologie
7.
PLoS Negl Trop Dis ; 6(1): e1430, 2012 Jan.
Article de Anglais | MEDLINE | ID: mdl-22272364

RÉSUMÉ

BACKGROUND: The present study aims to identify antigens in protein extracts of promastigote and amastigote-like Leishmania (Leishmania) chagasi syn. L. (L.) infantum recognized by antibodies present in the sera of dogs with asymptomatic and symptomatic visceral leishmaniasis (VL). METHODOLOGY/PRINCIPAL FINDINGS: Proteins recognized by sera samples were separated by two-dimensional electrophoresis (2DE) and identified by mass spectrometry. A total of 550 spots were observed in the 2DE gels, and approximately 104 proteins were identified. Several stage-specific proteins could be identified by either or both classes of sera, including, as expected, previously known proteins identified as diagnosis, virulence factors, drug targets, or vaccine candidates. Three, seven, and five hypothetical proteins could be identified in promastigote antigenic extracts; while two, eleven, and three hypothetical proteins could be identified in amastigote-like antigenic extracts by asymptomatic and symptomatic sera, as well as a combination of both, respectively. CONCLUSIONS/SIGNIFICANCE: The present study represents a significant contribution not only in identifying stage-specific L. infantum molecules, but also in revealing the expression of a large number of hypothetical proteins. Moreover, when combined, the identified proteins constitute a significant source of information for the improvement of diagnostic tools and/or vaccine development to VL.


Sujet(s)
Maladies des chiens/parasitologie , Électrophorèse bidimensionnelle sur gel/médecine vétérinaire , Leishmania/métabolisme , Leishmaniose viscérale/médecine vétérinaire , Protéines de protozoaire/métabolisme , Animaux , Bases de données de protéines , Chiens , Régulation de l'expression des gènes/physiologie , Leishmaniose viscérale/parasitologie , Protéines de protozoaire/génétique , Spectrométrie de masse en tandem
8.
Parasitol Res ; 110(3): 1277-85, 2012 Mar.
Article de Anglais | MEDLINE | ID: mdl-21915627

RÉSUMÉ

Experimental vaccines to protect against visceral leishmaniasis (VL) have been developed by using BALB/c mice infected with a large (107 to 108) inoculum of parasites. Remarkably, prior literature has reported that the poor protection observed is mainly due to the high susceptibility of this strain. To determine factors inherent to mice that might abrogate vaccine-induced efficacy, the present research sought to investigate the impact of the administration of different infective inoculums of Leishmania chagasi (syn. L. infantum) in BALB/c mice, evaluating subcutaneous and intravenous routes of administration as well as parasitological and immunological parameters over different periods of time. This study shows that the injection of a highly infective inoculum in mice, through both subcutaneous and intravenous routes, results in a sustained infection. The mice developed a high parasite load in the liver; however, these values diminished over time. This result did not corroborate with the parasite load in the bone marrow and brain and proved to be expressively different in the spleen and draining lymph nodes, where the values increased over time. Mice infected with a low dose of parasites (10³) showed a certain resistance against infection, based mainly on the IFN-γ and oxide nitric production. Considering all the elements, it could be concluded that the models employing high doses (107) of L. chagasi in BALB/c mice can bring about an imbalance in the animals' immune response, thus allowing for the development of the disease at the expense of efficacy within the vaccine candidates.


Sujet(s)
Leishmania infantum/physiologie , Leishmania infantum/pathogénicité , Leishmaniose viscérale/immunologie , Animaux , Anticorps antiprotozoaires/sang , Cytokines/biosynthèse , Femelle , Injections veineuses , Injections sous-cutanées , Leishmaniose viscérale/parasitologie , Souris , Souris de lignée BALB C , Monoxyde d'azote/biosynthèse , Charge parasitaire , Facteurs temps
9.
Parasitol Int ; 60(4): 357-63, 2011 Dec.
Article de Anglais | MEDLINE | ID: mdl-21723957

RÉSUMÉ

Leishmaniasis is a major public health problem, and the alarming spread of parasite resistance underlines the importance of discovering new therapeutic products. The present study aims to investigate the in vitro leishmanicidal activity of an Agaricus blazei Murill mushroom extract as compared to different Leishmania species and stages. The water extract proved to be effective against promastigote and amastigote-like stages of Leishmania amazonensis, L. chagasi, and L. major, with IC(50) (50% inhibitory concentration) values of 67.5, 65.8, and 56.8 µg/mL for promastigotes, and 115.4, 112.3, and 108.4 µg/mL for amastigotes-like respectively. The infectivity of the three Leishmania species before and after treatment with the water extract was analyzed, and it could be observed that 82%, 57%, and 73% of the macrophages were infected with L. amazonensis, L. major, and L. chagasi, respectively. However, when parasites were pre-incubated with the water extract, and later used to infect macrophages, they were able to infect only 12.7%, 24.5%, and 19.7% of the phagocytic cells for L. amazonensis, L. chagasi, and L. major, respectively. In other experiments, macrophages were infected with L. amazonensis, L. chagasi, or L. major, and later treated with the aforementioned extract, presented reductions of 84.4%, 79.6%, and 85.3% in the parasite burden after treatment. A confocal microscopy revealed the loss of the viability of the parasites within the infected macrophages after treatment with the water extract. The applied extract presented a low cytotoxicity in murine macrophages and a null hemolytic activity in type O(+) human red blood cells. No nitric oxide (NO) production, nor inducible nitric oxide syntase expression, could be observed in macrophages after stimulation with the water extract, suggesting that biological activity may be due to direct mechanisms other than macrophage activation by means of NO production. In conclusion, the results demonstrate that the A. blazei Murill water extract can potentially be used as a therapeutic alternative on its own, or in association with other drugs, to treat Visceral and Cutaneous Leishmaniasis.


Sujet(s)
Agaricus/composition chimique , Mélanges complexes/pharmacologie , Leishmania major/effets des médicaments et des substances chimiques , Leishmania mexicana/effets des médicaments et des substances chimiques , Leishmania/effets des médicaments et des substances chimiques , Leishmaniose cutanée/traitement médicamenteux , Leishmaniose viscérale/traitement médicamenteux , Macrophages/effets des médicaments et des substances chimiques , Animaux , Cellules cultivées , Mélanges complexes/composition chimique , Mélanges complexes/usage thérapeutique , Érythrocytes/cytologie , Érythrocytes/effets des médicaments et des substances chimiques , Femelle , Hémolyse/effets des médicaments et des substances chimiques , Humains , Leishmania/croissance et développement , Leishmania major/croissance et développement , Leishmania mexicana/croissance et développement , Leishmaniose cutanée/parasitologie , Leishmaniose viscérale/parasitologie , Macrophages/cytologie , Macrophages/parasitologie , Souris , Souris de lignée BALB C , Monoxyde d'azote/analyse , Nitric oxide synthase type II/métabolisme , Eau
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE